Menu

Executive Programs

Workshops

Projects

Blogs

Careers

Placements

Student Reviews


For Business


More

Academic Training

Informative Articles

Find Jobs

We are Hiring!


All Courses

Choose a category

Loading...

All Courses

All Courses

logo

Loading...
Executive Programs
Workshops
For Business

Success Stories

Placements

Student Reviews

More

Projects

Blogs

Academic Training

Find Jobs

Informative Articles

We're Hiring!

phone+91 9342691281Log in
  1. Home/
  2. KURUVA GUDISE KRISHNA MURHTY/
  3. Week 1- Mixing Tee

Week 1- Mixing Tee

OBJECTIVE:  For this challenge, we have created two versions of the mixing tee. One of them is longer than the other.  Our job is to set up steady-state simulations to compare the mixing effectiveness when hot inlet temperature is 360C & the Cold inlet is at 190C.   Use the k-epsilon and k-omega…

  • CFD
  • KURUVA GUDISE KRISHNA MURHTY

    updated on 10 Aug 2022

OBJECTIVE: 

For this challenge, we have created two versions of the mixing tee. One of them is longer than the other. 

Our job is to set up steady-state simulations to compare the mixing effectiveness when hot inlet temperature is 360C & the Cold inlet is at 190C.  

Use the k-epsilon and k-omega SST model for the first case and based on your judgment use the more suitable model for further cases. Giving the reason for choosing a suitable model is compulsory.  

  1. Case 1  
  • Short mixing tee with a hot inlet velocity of 3m/s. 
  • Momentum ratio of 2, 4.  
  1. Case 2  
  • Long mixing tee with a hot inlet velocity of 3m/s. 
  • Momentum ratio of 2, 4. 

INTRODUCTION: 

The function of mixing Tee is to provide proper mixing of quantities to get the desired result at the outlet. 

By controlling the velocity of chilled air, we can get the desired temperature in the room. 

ANSYS WORKFLOW: 

GEOMETRY: Construct a two- or three-dimensional representation of the object to be modelled and tested using the work plane coordinate system within ANSYS. 

MESH: At this point ANSYS understands the makeup of the part. Now define how the modelled system should be broken down into finite pieces. 

SETUP: The case setup will be done using Ansys fluent 

SOLUTION: Ansys fluent where run time result visualization is done 

RESULTS: Post processing of results will be done here using CFD-post 

SHORT TEE: 

GEOMETRY SETUP: 

The computational models are uploaded to the Ansys Space Claim as a step file. 

In this project, we are interested in performing fluid flow analysis through the geometry, hence we used the volume extraction option to extract the fluid volume from the geometry. Then the solid model is suppressed for physics from the fluid model to create mesh at the interested region. 

MESH GENERATION: 

The boundary names inlet_x, inlet_y, outlet and wall are defined using the named selection option. 

After generating the mesh, the number of nodes and elements are investigated using the statistics option. Then the mesh quality is checked by choosing the mesh metrices option in quality section. 

The element quality should not be less than 5%. In our case minimum mesh quality is 30%, so we can move ahead. 

SETUP AND SOLUTION: 

CASE 1: 

  • Short mixing Tee with a hot inlet velocity of 3m/s 
  • Momentum ratio of 2,4 

CASE 1.1: 

  • Short mixing Tee with a hot inlet velocity of 3m/s 
  • Momentum ratio of 2 

SETUPS 

  

SHORT TEE (MR=2 AND HOT INLET VELOCITY = 3m/s) 

  

K-EPSILON 

K-OMEGA 

SOLVER TYPE 

Pressure based 

Pressure based 

VELOCITY FORMULATION 

Absolute 

Absolute 

TIME 

Steady 

Steady 

VISCOUS MODEL 

Realizable K-epsilon with standard wall function 

K-omega SST model 

MATERIAL 

Air 

Air 

CELL ZONES 

Fluid type: air 

Fluid type: air 

BOUNDARIES 

·       Inlet_x (velocity inlet) 

        Velocity magnitude 3m/s 

        Temperature - 360c 

·       Inlet_y (velocity inlet) 

        Velocity magnitude 6m/s 

        Temperature – 190c 

·       Outlet (pressure outlet) 

        Gauge pressure – 0 pa 

·       Walls – stationary   walls 

·       Inlet_x (velocity inlet) 

        Velocity magnitude 3m/s 

        Temperature - 360c 

·       Inlet_y (velocity inlet) 

        Velocity magnitude 6m/s 

        Temperature – 190c 

·       Outlet (pressure outlet) 

        Gauge pressure – 0 pa 

·       Walls – stationary   walls 

The hybrid scheme is used for initialization and the no. of iterations are setup and then click on calculate option.

Setup:

RESULTS: 

K-EPSILON MODEL: 

RESIDUAL PLOT: 

AREA WEIGHTED AVERAGE: 

STANDARD DEVIATION: 

CONTOUR PLOT: 

TEMPERATURE CONTOUR: 

VELOCITY CONTOUR: 

K-OMEGA MODEL: 

RESIDUAL PLOT: 

AREA WEIGHTED AVERAGE: 

STANDARD DEVIATION: 

CONTOUR PLOT: 

TEMPERATURE CONTOUR: 

VELOCITY CONTOUR: 

 

SUMMARY: 

  

SHORT TEE (MR = 2) 

K-EPSILON 

K-OMEGA 

AVERAGE OUTLET TEMPERATURE [K] 

303.413 

303.458 

STANDARD DEVIATION 

2.5 

2.768 

NO OF ITERATIONS 

210

280

 

CASE 1.2: 

  • Short mixing Tee with a hot inlet velocity of 3m/s 
  • Momentum ratio of 4 

SETUPS 

  

SHORT TEE (MR=2 AND HOT INLET VELOCITY = 3m/s) 

  

K-EPSILON 

K-OMEGA 

SOLVER TYPE 

Pressure based 

Pressure based 

VELOCITY FORMULATION 

Absolute 

Absolute 

TIME 

Steady 

Steady 

VISCOUS MODEL 

Realizable K-epsilon with standard wall function 

K-omega SST model 

MATERIAL 

Air 

Air 

CELL ZONES 

Fluid type: air 

Fluid type: air 

BOUNDARIES 

·       Inlet_x (velocity inlet) 

        Velocity magnitude 3m/s 

        Temperature - 360c 

·       Inlet_y (velocity inlet) 

        Velocity magnitude 12m/s 

        Temperature – 190c 

·       Outlet (pressure outlet) 

        Gauge pressure – 0 pa 

·       Walls – stationary   walls 

·       Inlet_x (velocity inlet) 

        Velocity magnitude 3m/s 

        Temperature - 360c 

·       Inlet_y (velocity inlet) 

        Velocity magnitude 12m/s 

        Temperature – 190c 

·       Outlet (pressure outlet) 

        Gauge pressure – 0 pa 

·       Walls – stationary   walls 

  

The hybrid scheme is used for initialization and the no. of iterations are setup and then click on calculate option. 

RESULTS: 

K-EPSILON MODEL: 

RESIDUAL PLOT: 

AREA WEIGHTED AVERAGE: 

STANDARD DEVIATION: 

CONTOUR PLOT: 

TEMPERATURE CONTOUR: 

VELOCITY CONTOUR: 

K-OMEGA MODEL: 

RESIDUAL PLOT: 

AREA WEIGHTED AVERAGE: 

STANDARD DEVIATION: 

CONTOUR PLOT: 

TEMPERATURE CONTOUR:

 

VELOCITY CONTOUR: 

 

SUMMARY: 

  

SHORT TEE (MR = 4) 

K-EPSILON 

K-OMEGA 

AVERAGE OUTLET TEMPERATURE [K] 

300.7

300.88 

STANDARD DEVIATION 

1.8

2.2

NO OF ITERATIONS 

250

300

 

AVERAGE OUTLET TEMPERATURE: 

On comparing the both models with analytical solution we got nearly the same results. 

ITERATIONS TO CONVERGE: 

No. of iterations taken to converge is less for Realisable K-epsilon model than K-omega SST model. 

STANDARD DEVIATION: 

The standard deviation of k-epsilon model is less than k-omega model which shows the better mixing efficiency in k-epsilon model. 

So based on the above observations the K-epsilon turbulence model is predicting the results accurately in less no. of iterations. So we can use realisable k-epsilon model for case 2.

 

LONG TEE: 

GEOMETRY SETUP: 

The computational models are uploaded to the Ansys Space Claim as a step file. 

 

In this project, we are interested in performing fluid flow analysis through the geometry, hence we used the volume extraction option to extract the fluid volume from the geometry. Then the solid model is suppressed for physics from the fluid model to create mesh at the interested region. 

MESH GENERATION: 

The boundary names inlet_x, inlet_y, outlet and wall are defined using the named selection option. 

After generating the mesh, the number of nodes and elements are investigated using the statistics option. Then the mesh quality is checked by choosing the mesh metrices option in quality section. 

The element quality should not be less than 5%. In our case minimum mesh quality is 30%, so we can move ahead. 

SETUP AND SOLUTION: 

CASE 2: 

  • Long mixing tee with a hot inlet velocity of 3m/s. 
  • Momentum ratio of 2, 4. 

CASE 2.1: 

  • Long mixing tee with a hot inlet velocity of 3m/s. 
  • Momentum ratio of 2. 

SETUPS 

LONG TEE (MR=2 AND HOT INLET VELOCITY 3m/s) 

K-EPSILON 

SOLVER TYPE 

Pressure based 

VELOCITY FORMULATION 

Absolute 

TIME 

Steady 

VISCOUS MODEL 

Realizable K-epsilon with standard wall function 

MATERIAL 

Air 

CELL ZONES 

Fluid type: air 

BOUNDARIES 

·       Inlet_x (velocity inlet) 

        Velocity magnitude 3m/s 

        Temperature - 360c 

·       Inlet_y (velocity inlet) 

        Velocity magnitude 6m/s 

        Temperature – 190c 

·       Outlet (pressure outlet) 

        Gauge pressure – 0 pa 

·       Walls – stationary   walls 

The hybrid scheme is used for initialization and the no. of iterations are setup and then click on calculate option. 

RESULTS: 

RESIDUAL PLOT: 

AREA WEIGHTED AVERAGE: 

STANDARD DEVIATION: 

CONTOUR PLOT: 

TEMPERATURE CONTOUR: 

VELOCITY CONTOUR: 

CASE 2.2: 

  • Long mixing tee with a hot inlet velocity of 3m/s. 
  • Momentum ratio of 4. 

SETUPS 

LONG TEE (MR=2 AND HOT INLET VELOCITY 3m/s) 

K-EPSILON 

SOLVER TYPE 

Pressure based 

VELOCITY FORMULATION 

Absolute 

TIME 

Steady 

VISCOUS MODEL 

Realizable K-epsilon with standard wall function 

MATERIAL 

Air 

CELL ZONES 

Fluid type: air 

BOUNDARIES 

·       Inlet_x (velocity inlet) 

        Velocity magnitude 3m/s 

        Temperature - 360c 

·       Inlet_y (velocity inlet) 

        Velocity magnitude 12m/s 

        Temperature – 190c 

·       Outlet (pressure outlet) 

        Gauge pressure – 0 pa 

·       Walls – stationary   walls 

The hybrid scheme is used for initialization and the no. of iterations are setup and then click on calculate option. 

RESULTS: 

RESIDUAL PLOT: 

AREA WEIGHTED AVERAGE: 

STANDARD DEVIATION: 

CONTOUR PLOT: 

TEMPERATURE CONTOUR:

VELOCITY CONTOUR: 

SUMMARY: 

  

LONG TEE (MR = 2) 

LONG TEE (MR = 4) 

AVERAGE OUTLET TEMPERATURE [K] 

303.367 

300.94

STANDARD DEVIATION 

1.8

1.4

NO OF ITERATIONS 

280

320

COMPARISON OF BOTH LONG AND SHORT TEE: 

K-EPSILON REALIZABLE MODEL 

GEOMETRY 

MOMENTUM RATIO 

AVERAGE OUTLET TEMPERATURE [K] 

NO. OF ITERATIONS 

STANDARD DEVIATION 

SHORT TEE 

2 

300.8

210

1.8

SHORT TEE 

4 

300.8

250

2.3

LONG TEE 

2 

303.5

280

1.8

LONG TEE 

4 

300.9

320

1.5

OVERALL DISCUSSION: 

AVERAGE OUTLET TEMPERATURE: 

Irrespective of length of the mixing Tee, the average outlet temperature on both cases is quite same. 

MOMENTUM RATIO: 

  • As momentum ratio increases, the velocity of cold inlet fluid increases and due to high relative velocity between the fluid it experiences higher turbulence and therefore the outlet fluid temperature decreases. 
  • For momentum ratio 2, the average outlet fluid temperature is 303k whereas for momentum ratio 4 the average outlet fluid temperature is 300k. From these we can say that there will be a drop in temperature if momentum ratio increases. 
  • In order to obtain better mixing the velocity of cold air is important. By increasing the cold fluid velocity, the outlet temperature gets reduced.
  • No OF ITERATIONS:

The longer Tee takes more time to converge than short Tee. 

CONCLUSION: 

  • Higher the momentum ratio, higher will be the mixing efficiency of Tee joint. 
  • Increasing the length of the pipe doesn’t serve the purpose of mixing efficiently. So, it is efficient to use short pipe. 

 

 

GRID INDEPENDENCY TEST: 

Short Tee model is selected for grid dependence test. 

MESH GENERATION:

0.5mm

1mm

RESULTS: 0.5mm

RESIDUAL PLOT: 

AREA WEIGHTED AVERAGE: 

STANDARD DEVIATION: 

contours

TEMPERATURE CONTOUR:

VELOCITY CONTOUR:

RESULTS: 1mm

RESIDUAL PLOT: 

AREA WEIGHTED AVERAGE: 

STANDARD DEVIATION:

 

contours

TEMPERATURE CONTOUR:

VELOCITY CONTOUR:

SUMMARY: 

MESH SIZE 

NO. OF ELEMENTS 

NO. OF NODES 

AVERAGE OUTLET TEMPERATURE 

NO. OF ITERATIONS 

0.5mm 

 1904433

371094

303.7

250 

1mm 

415436

82732

303.8

280

  

CONCLUSION: 

  • The mesh size of 0.5mm gives the best predicted results than other two mesh size 
  • Decreasing the mesh size, the average outlet temperature starts approaching towards the analytical results. 

Leave a comment

Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.

Please  login to add a comment

Other comments...

No comments yet!
Be the first to add a comment

Read more Projects by KURUVA GUDISE KRISHNA MURHTY (26)

Project 1 : CFD Meshing for Tesla Cyber Truck

Objective:

                                       CFD Meshing for Tesla Cyber Truck   Initial Model    First of all…

calendar

09 Nov 2022 05:46 PM IST

  • ANSA
  • CFD
Read more

Week 10 - Simulating Combustion of Natural Gas.

Objective:

COMBUSTION Combustion is defined as a chemical reaction in which a hydrocarbon reacts with an oxidant to form products, accompanied by the release of energy in the form of heat.  Combustion manifests as awode domain during the design, analysis, and performance characteristics stage by being an integral part of various…

calendar

08 Nov 2022 07:38 PM IST

  • CFD
  • COMBUSTION
Read more

Week 9 - Parametric study on Gate valve.

Objective:

  Theory:   Introduction:    Gate valves are designed for fully open or fully closed service. They are installed in pipelines as isolating valves and should not be used as control or regulating valves. Operation of a gate valve is performed doing an either clockwise to close (CTC) or clockwise…

calendar

07 Nov 2022 05:07 PM IST

    Read more

    Week 12 - Validation studies of Symmetry BC vs Wedge BC in OpenFOAM vs Analytical H.P equation

    Objective:

    Angles to test: θ=100θ=100 θ=250θ=250 θ=450θ=450   Expected Results Validate Hydro-dynamic length with the numerical result Validate the fully developed flow velocity profile with its analytical profile Validate maximum velocity and pressured drop for fully developed flow Post-process Shear stress and validate…

    calendar

    06 Nov 2022 06:53 AM IST

    • CFD
    • HTML
    • MATLAB
    Read more

    Schedule a counselling session

    Please enter your name
    Please enter a valid email
    Please enter a valid number

    Related Courses

    coursecardcoursetype

    Post Graduate Program in CFD Solver Development

    4.8

    106 Hours of Content

    coursecard

    Introduction to OpenFOAM Development

    4.9

    18 Hours of Content

    coursecardcoursetype

    Post Graduate Program in Battery Technology for Mechanical Engineers

    4.8

    57 Hours of Content

    coursecardcoursetype

    Post Graduate Program in Automation & Pre-Processing for FEA & CFD Analysis

    4.7

    81 Hours of Content

    coursecardcoursetype

    Post Graduate Program in Hybrid Electric Vehicle Design and Analysis

    4.8

    321 Hours of Content

    Schedule a counselling session

    Please enter your name
    Please enter a valid email
    Please enter a valid number

                Do You Want To Showcase Your Technical Skills?
                Sign-Up for our projects.