Menu

Executive Programs

Workshops

Projects

Blogs

Careers

Placements

Student Reviews


For Business


More

Academic Training

Informative Articles

Find Jobs

We are Hiring!


All Courses

Choose a category

Loading...

All Courses

All Courses

logo

Loading...
Executive Programs
Workshops
For Business

Success Stories

Placements

Student Reviews

More

Projects

Blogs

Academic Training

Find Jobs

Informative Articles

We're Hiring!

phone+91 9342691281Log in
  1. Home/
  2. KURUVA GUDISE KRISHNA MURHTY/
  3. Project 2 - Rankine cycle Simulator

Project 2 - Rankine cycle Simulator

Object:  Creating a Rankine Cycle Simulator & Calculating the state points of the Rankine Cycle based on user inputs.  Plotting the corresponding T-S and H-S plots for the given set of inputs.    Theory:  The Rankine cycle is an idealized thermodynamic cycle of a constant pressure heat engine…

    • KURUVA GUDISE KRISHNA MURHTY

      updated on 24 May 2022

    Object: 

    Creating a Rankine Cycle Simulator & Calculating the state points of the Rankine Cycle based on user inputs. 

    Plotting the corresponding T-S and H-S plots for the given set of inputs. 

     

    Theory: 

    The Rankine cycle is an idealized thermodynamic cycle of a constant pressure heat engine that converts part of heat into mechanical work. In this cycle, the heat is supplied externally to a closed loop, which usually uses water (in a liquid and vapor phase) as the working fluid. 

    Rankine cycle is the theoretical cycle on which the steam turbine works  

    Process 1-2: Reversible adiabatic expansion in the turbine (or steam engine). 

    Process 2-3: Constant-pressure transfer of heat in the condenser. 

    Process 3-4: Reversible adiabatic pumping process in the feed pump. 

    Process 4-1: Constant-pressure transfer of heat in the boiler. 

     

     

     

     Applying steady flow energy equation (S.F.E.E) to boiler, turbine, condenser and pump

         1 For boiler (as control volume), we get 

                        F4+Q1=h1 

                        Q1=h1-hf4

         2 For turbine (as control volume), we get 

                         h1=WT+h2, where WT=turbine work 

                         WT=h1-h2 

         3 For condenser, we get  

                         H2=Q2+hf3 

                         Q2=h2-hf3 

         4 For the feed pump, we get  

                        Hf3+wp=hf4, where, WP=Pump work 

                         WP=hf4-hf3=v3(p1-p2) 

    Efficiency of Rankine cycle is given by  

                         Efficiency =W/Qnet1=WT/Q1 

    Required Inputs:

    Turbine Inlet temperature = 400° C

    Turbine Inlet Pressure = 30 bars

    Turbine Outlet Pressure = 0.05 bars = Condenser Inlet Pressure

     

     

     

    Code:

    %Rankine cycle calculation 
    
    %Clearing workspace, command window & closing all plots 
    clear all
    close all
    clc
    
    %step 1
    %print discription of all process
    fprintf('      RANKINE CYCLE SIMULATOR');
    fprintf('1-2 Isentropic Expansion in the Turbine');
    fprintf('2-3 constant pressure Heat Rejection by the Condenser');
    fprintf('3-4 Isentropic Compression in the Pump');
    fprintf('4-1 constant pressure Heat Addition by the Boiler');
    
    %step 2
    %Taking all input arguments
    P1=input('Enter the pressure at the Turbine Inlet (in bar): ');
    T1=input('Enter the Temperature at the Turbine Inlet (in Degree Celsius): ');
    P2=input('Enter the pressure at the Condenser (in bar): ');
    
    fprintf('      RESULT')
    
    %% Calculation for General properties
    %step 3
    %Calculation of cp value at P1 & P2 for saturated liquid & vapour
    CP1_L=XSteam('CPL_P',P1);
    CP1_V=XSteam('CPV_P',P1);
    CP2_L=XSteam('CPL_P',P2);
    CP2_V=XSteam('CPV_P',P2);
    
    %step 4
    %Calculation of saturation temperture at P1 & P2
    Tsat_P1=XSteam('Tsat_p',P1);
    Tsat_P2=XSteam('Tsat_p',P2);
    
    %%Calculation of Enthalpy & Entropy at saturation points
    %step 5
    %Calculation of saturation properties at state 1
    Hg_1=XSteam('hV_p',P1);
    Sg_1=XSteam('sV_p',P1);
    
    %step 6
    %Calculation of saturation properties at state 2
    Hg_2=XSteam('hV_p',P2);
    Sg_2=XSteam('sV_p',P2);
    
    %step 7
    %Calculation of saturation properties at state 3
    Hf_3=XSteam('hL_p',P2);
    Sf_3=XSteam('sL_p',P2);
    
    %step 8
    %Calculation of saturation properties at state 4
    Hf_4=XSteam('hL_p',P1);
    Sf_4=XSteam('sL_p',P1);
    
    %%Calculation of process properties at state 1
    %step 9
    %Calculation of process properties at state 1
    fprintf('At State point 1n');
    
    fprintf('P1 is :%f Barn',P1);
    
    fprintf('T1 is :%f degCn',T1);
    
    H1=XSteam('h_pT',P1,T1);
    fprintf('H1 is :%f kJ/kgn',H1);
    
    S1=XSteam('s_pT',P1,T1);
    fprintf('S1 is :%f kJ/kgnn',S1);
    
    %%Calculation of process properties at state 2
    %step 10
    %Calculation of process properties at state 2
    fprintf('At State point 2n');
    
    fprintf('P2 is :%f Barn',P2);
    
    S2=S1;
    fprintf('S2 is :%f kJ/kgKn', S2);
    
    %Calculating the value of  X
    if(S2<Sg_2)
        X2=(S2-Sf_3)/(Sg_2-Sf_3); 
    else
        X2=1;
    end
    fprintf('X2 is  :%f n', X2);
    
    %calculating value of T2
    if(X2<1)
        T2=Tsat_P2;
    else
        %S2=Sg_2+CP2_V*(log(T2/Tsat_P2))
        T2=(Tsat_P2+273.15)*exp((S2-Sg_2)/CP2_V);
        T2=T2-273.15;
    end
    fprintf('T2 is :%f degCn',T2);
    
    if(X2<1)
        H2=Hf_3+X2*(Hf_3-Hg_2);
    else
        H2=XSteam('h_pT',P2,T2);
    end
    fprintf('H2 is : %f kJ/kgnn', H2)
    
    %%Calculation of process properties at state 3
    %step 11
    %Calculation of process properties at state 3
    
    fprintf('At state point 3n')
    
    P3=P2;
    fprintf('P3 is : %f Barn', P3)
    
    V3=XSteam('vL_p', P3);
    
    T3=Tsat_P2;  %No subcooling assumed 
    fprintf('T3 is : %f degCn', T3)
    
    H3=Hf_3;
    fprintf('H3 is : %f kJ/kgn', H3)
    
    S3=Sf_3;
    fprintf('S3 is : %f kJ/kgnn', S3)
    
    %%Calculation of process properties at state 4
    %step 12
    %Calculation of process properties at state 4
    
    fprintf('At state point 4n');
    
    P4=P1;
    fprintf('P4 is : %f Barn', P4)
    
    S4=S3;
    fprintf('S4 is : %f kJ/kgn', S4)
    
    Wp=V3*(P4-P3)*100;
    H4=Wp+H3;
    fprintf('H4 is : %f kJ/kgn', H4)
    
    T4=(Tsat_P1+273.15)/(exp((Sf_4-S4)/CP1_L));
    T4=T4-273.15;
    fprintf('T4 is : %f Deg celsius nn', T4)
    
    
    %%Calculation for plotting saturated liquid and vapor lines
    %step 13
    %Calculation & plotting saturated liquid and vapor lines
    
    temp=linspace(1,T1,1000);
    for i=1:length(temp)
        H_L(i)=XSteam('hL_T',temp(i));
        H_V(i)=XSteam('hV_T',temp(i));
        S_L(i)=XSteam('sL_T',temp(i));
        S_V(i)=XSteam('sV_T',temp(i));
    end
    
    %%ploting T-S and H-S Diagrams
    %step 14
    %plotting T-S plot
    
    figure(1)
    hold on 
    plot([S1 S2],[T1 T2],'r','LineWidth', 2)
    text(S1,T1,' 1')
    text(S2,T2,' 2')
    plot([S2 Sg_2],[T2 Tsat_P2],'r','LineWidth', 2)
    text(Sg_2,Tsat_P2,' 2s')
    plot([Sg_2 S3],[Tsat_P2 T3],'r','LineWidth', 2)
    text(S3,T3,' 3')
    plot([S3 S4],[T3 T4],'r','LineWidth', 2)
    text(S4,T4,' 4')
    plot([S4 Sf_4],[T4 Tsat_P1],'r','LineWidth', 2)
    text(Sf_4,Tsat_P1,' 4s')
    plot([Sf_4 Sg_1],[Tsat_P1 Tsat_P1],'r','LineWidth', 2)
    text(Sg_1,Tsat_P1,' 1s')
    plot([Sg_1 S1],[Tsat_P1 T1],'r','linewidth', 2)
    plot(S_L,temp,'b','linestyle','--','LineWidth', 1)
    plot(S_V,temp,'b','linestyle','--','LineWidth', 1)
    title('T-S Diagram of Ideal Rankine Cycle')
    xlabel('Specific Entropy (kJ/kgk)')
    ylabel('Temperture (degC)')
    
    %step 15
    %ploting H_S plot
    
    figure(2)
    hold on 
    plot([S1 S2],[H1 H2],'r','LineWidth', 2)
    text(S1,H1,' 1')
    text(S2,H2,' 2')
    plot([S2 Sg_2],[H2 Hg_2],'r','LineWidth', 2)
    text(Sg_2,Hg_2,' 2s')
    plot([Sg_2 S3],[Hg_2 H3],'r','LineWidth', 2)
    text(S3,H3,' 3')
    plot([S3 S4],[H3 H4],'r','LineWidth', 2)
    text(S4,H4,' 4')
    plot([S4 Sf_4],[H4 Hf_4],'r','LineWidth', 2)
    text(Sf_4,Hf_4,' 4s')
    plot([Sf_4 Sg_1],[Hf_4 Hg_1],'r','LineWidth', 2)
    text(Sg_1,Hg_1,' 1s')
    plot([Sg_1 S1],[Hg_1 H1],'r','linewidth', 2)
    plot(S_L,H_L,'b','linestyle','--','LineWidth', 1.5)
    plot(S_V,H_V,'b','linestyle','--','LineWidth', 1.5)
    title('H-S Diagram of Ideal Rankine Cycle')
    xlabel('Specific Enthalpy (kJ/kg)')
    ylabel('Specific Entropy (kJ/kgk)')
    
    
    %% work done, heat, SSC and efficiency calculation
    %step 16
    %calculation of work done, heat, SSC and efficiency
    Wt=H1-H2;
    fprintf('Work by turbine is : %f kJ/kgn',Wt)
    fprintf('Work by compressor is : %f kJ/kgn',Wp)
    Wnet=Wt-Wp;
    fprintf('Net Work done is : %f kJ/kgn',Wnet)
    Qin=H1-H4;
    %Efficiency
    eff_thermal=Wnet*100/Qin;  
    fprintf('Thermal efficiency is : %f', eff_thermal); disp('%')
    %specific steam consuption
    SSC=3600/Wt;
    fprintf('S.S.C is : %f kg/kWh',SSC)
    

    Explanation: 

    For writing this program, we are using XSteam.m which is basically steam table 

    Step 1: Clearing workspace, command window & closing all plots  

    Step 2: print discription of all process in command window 

    Step 3: Taking all input arguments. 

    Step 4: calculate pf cp value are p1 and p2 for saturated liquid & vapor 

    Step 5: calculation of saturation temperature at p1 & p2 

    Step 6: calculation of saturation properties at state 1 

    Step 7: calculation of saturation properties at state 2 

    Step 8: calculation of saturation properties at state 3 

    Step 9: calculation of saturation properties at state 4 

    Step 10: calculation of process properties at state 1 

    Step 11: calculation of process properties at state 2 

    Step 12: calculation of process properties at state 3 

    Step 13: calculation of process properties at state 4 

    Step 14: Calculate & plotting saturation liquid and vapor lines. 

    Step 15: plotting T-S plot 

    Step 16: plotting H-S plot 

    Step 17: Calculation of working done, heat, SSC and efficiency. 

     

    Output:

     

     

     

    Enter the pressure at the Turbine Inlet (in bar): 30 

    Enter the Temperature at the Turbine Inlet (in Degree Celsius): 400 

    Enter the pressure at the Condenser (in bar): 0.05 

     

    RESULT 

    At State point 1n 

    P1 is :30.000000 Barn 

    T1 is :400.000000 degCn 

    H1 is :3231.571027 kJ/kgn 

    S1 is :6.923259 kJ/kgnn 

    At State point 2n 

    P2 is :0.050000 Barn 

    S2 is :6.923259 kJ/kgKn 

    X2 is :0.814256 n 

    T2 is :32.875490 degCn 

    H2 is: -1835.177974 kJ/kgnn 

    At state point 3n 

    P3 is: 0.050000 Barn 

    T3 is: 32.875490 degCn 

    H3 is: 137.765119 kJ/kgn 

    S3 is: 0.476254 kJ/kgnn 

    At state point 4n 

    P4 is: 30.000000 Barn 

    S4 is: 0.476254 kJ/kgn 

    H4 is: 140.776056 kJ/kgn 

    T4 is: 46.846863 Deg celsius nn 

     

    Work by turbine is: 5066.749001 kJ/kgn 

    Work by compressor is: 3.010937 kJ/kgnNet 

     Work done is: 5063.738064 kJ/kgn 

    Thermal efficiency is: 163.832869% 

    S.S.C is: 0.710515 kg/kWh 

     

     

     

    Leave a comment

    Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.

    Please  login to add a comment

    Other comments...

    No comments yet!
    Be the first to add a comment

    Read more Projects by KURUVA GUDISE KRISHNA MURHTY (26)

    Project 1 : CFD Meshing for Tesla Cyber Truck

    Objective:

                                           CFD Meshing for Tesla Cyber Truck   Initial Model    First of all…

    calendar

    09 Nov 2022 05:46 PM IST

    • ANSA
    • CFD
    Read more

    Week 10 - Simulating Combustion of Natural Gas.

    Objective:

    COMBUSTION Combustion is defined as a chemical reaction in which a hydrocarbon reacts with an oxidant to form products, accompanied by the release of energy in the form of heat.  Combustion manifests as awode domain during the design, analysis, and performance characteristics stage by being an integral part of various…

    calendar

    08 Nov 2022 07:38 PM IST

    • CFD
    • COMBUSTION
    Read more

    Week 9 - Parametric study on Gate valve.

    Objective:

      Theory:   Introduction:    Gate valves are designed for fully open or fully closed service. They are installed in pipelines as isolating valves and should not be used as control or regulating valves. Operation of a gate valve is performed doing an either clockwise to close (CTC) or clockwise…

    calendar

    07 Nov 2022 05:07 PM IST

      Read more

      Week 12 - Validation studies of Symmetry BC vs Wedge BC in OpenFOAM vs Analytical H.P equation

      Objective:

      Angles to test: θ=100θ=100 θ=250θ=250 θ=450θ=450   Expected Results Validate Hydro-dynamic length with the numerical result Validate the fully developed flow velocity profile with its analytical profile Validate maximum velocity and pressured drop for fully developed flow Post-process Shear stress and validate…

      calendar

      06 Nov 2022 06:53 AM IST

      • CFD
      • HTML
      • MATLAB
      Read more

      Schedule a counselling session

      Please enter your name
      Please enter a valid email
      Please enter a valid number

      Related Courses

      coursecardcoursetype

      Accelerated Career Program in Embedded Systems (On-Campus) - Powered by NASSCOM

      Recently launched

      0 Hours of Content

      coursecard

      5G Protocol and Testing

      Recently launched

      4 Hours of Content

      coursecard

      Automotive Cybersecurity

      Recently launched

      9 Hours of Content

      coursecardcoursetype

      Pre-Graduate Program in Bioengineering and Medical Devices

      Recently launched

      90 Hours of Content

      coursecardcoursetype

      Pre-Graduate Program in 5G Design and Development

      Recently launched

      49 Hours of Content

      Schedule a counselling session

      Please enter your name
      Please enter a valid email
      Please enter a valid number

                  Do You Want To Showcase Your Technical Skills?
                  Sign-Up for our projects.