Menu

Executive Programs

Workshops

Projects

Blogs

Careers

Placements

Student Reviews


For Business


More

Academic Training

Informative Articles

Find Jobs

We are Hiring!


All Courses

Choose a category

Loading...

All Courses

All Courses

logo

Loading...
Executive Programs
Workshops
For Business

Success Stories

Placements

Student Reviews

More

Projects

Blogs

Academic Training

Find Jobs

Informative Articles

We're Hiring!

phone+91 9342691281Log in
  1. Home/
  2. VARSHA MOHAN WAGH/
  3. Project 2

Project 2

1) Design a Warehouse Building located in Chennai using STAAD Pro Connect Edition. The specification must be as follows:      Width  30m Length 50m Eave Height 9m Bay spacing 6m Soil type Medium Safe Bearing Capacity 200 kN/m2 Roof slope 1 in 12 Assume suitable sections for structural elements. Follow IS800:2007, IS1893…

  • HTML
  • VARSHA MOHAN WAGH

    updated on 12 Oct 2022

1) Design a Warehouse Building located in Chennai using STAAD Pro Connect Edition. The specification must be as follows:

    

Width 

30m

Length

50m

Eave Height

9m

Bay spacing

6m

Soil type

Medium

Safe Bearing Capacity

200 kN/m2

Roof slope

1 in 12

Assume suitable sections for structural elements. Follow IS800:2007, IS1893 and IS 875

1) Prepare a Design Basis Report for the project :-

        PDF formate attach below

2) Create structural model using STAAD Pro Connect Edition :-      

       

       

3) Prepare DL, LL, WL and EQL load calculations as per IS 875 standards :-  

       

 1) Design Foundations using STAAD Foundation :-

       

      

     

     

     

     

    

     

     

4) Design using MS – Excel

  1.       a) Steel column :- 

                          Height of column h = 9m

                          Yeild strength fy = 250N/mm^2

                         Elastic modulus E = 200000N/mm^2

                         Material factor γm = 1.1

          Step :- 1

                      Section classification

                           Properties of selected section                             

ISHB

400

A

10466mm^2

h

400mm

B

250mm

t

10.6mm

T

12.7mm

rx

166.1mm

ry

51.6mm

Zp

cm^3

                            Flange criterion b/T = 9.84

                             Web criterion   d/t = 35.34

                                                    ε = 1

                                                   b/T < 10.5

                                                   d/t < 42

                                 The section is classified as COMPACT

          Step :- 2

                      Effective length

                                   As both ends pin-jointed

                                                              KLx = 9m

                                                              KLy = 9m

                                                              KLz = 9m

                      Slenderness ratio

                                                             KLx/rx = 54.18

                                                             KLy/ry = 174.42

                     Non-dimensional effective slenderness ratio

                                                           

                                                                    λ = 1.964

           Step :- 3

                       To calculate φ

                                   h/bf = 1.60

                                           > 1.2

                                        T = 12.7mm

                       So, buckling class = b

                                         α = 0.34                                       

                               φ = 0.5(1+α(λ-0.2)+λ^2)

                                        φ = 2.73

          Step :- 4

                     Claculation of χ 

                                         

                                         χ = 0.216N/mm^2

            Step :- 5

                       Calculation of fcd

                                             fcd = χfy/γm 

                                                  = 49.17

              Step :- 6

                         Factored Axial Load

                                                 Pd = Afcd

                                                      = 514.614kN

  1.      b) Rafter :- 

                        Span of I beam = 6m

                       Dead load = 18kN/m

                       Imposed load = 40kN/m

                       Length of bearing = 100mm

                       Yield strength = 250N/mm^2

                         

               Step :- 1

                          Design load calculation

                                 Factored load = 87kN/m

                                 Factored bending moment = 391.5kNm

                Step :- 2

                          Section modulus required

                                              Zreqd = 1722600mm^3

                                                        = 1722.60cm^3

               Step :- 3

                          Section classification

                                       Properties of selected section                        

ISMB

250

A

475.5mm^2

D

250mm

B

125mm

t

6.9mm

T

12.5mm

Izz

5131.6cm^4

Iyy

344.5cm^4

Zp

459.76cm^3

                                        Flange criterion B/2T = 5

                                       Web criterion (D-2T)t = 32.61

                                                               ε = 1

                                                             B/2T < 9.4

                                                            (D-2T)/t < 83.9

                                        The section is classified as PLASTIC

            Step :- 3

                        Moment of resistance of the cross section

                                  Moment Md = (Zpχfy)/γm 

                                               Md = 104.491kNm

                                                     < 391.50

                          Hence section ISMB 250 is adequate for flexure

            Step :- 4

                        Shear resistance of the cross section

                                   Shear capacity Vc = 0.6fyAv/γm 

                                                          Av = 1725mm^2

                                                          Vc = 235.23kN

                                                           V = 261kN

                                                          V/Vc = 1.11

                                                                 .> 0.6

            Step :- 5

                       Check for web buckling 

                                 Slenderness ratio of web = 2.5d/t

                                                               d = 225mm

                                                                  = 70.33mm

                                Design compressive stress fc = 203N/mm^2

                                                                 Pw = 315.16kN

                                                                       > 261

                                    Hence web is safe against shear buckling 

         Step :- 6

                    Check for web crippling at support

                                Root radius of ISMB250    R = 13mm

                                                                  tf + R = 25.5mm

                                Dispersion length   n^2 = 63.75mm

                                                              Pcrip = 245625N

                                                                      = 245.63kN

                                                                      < 261

                              Hence section adequate for web crippling

        Step :- 7

                   Check for serviceability Deflection

                                  Design load = 58kN/m

                                   Deflection δ = 95.36mm

                                  Allowable deflection = 30mm

                                     Hence serviceability is satisfied

  1.        c) Base plate :-

            Step :- 1

                                Strength of concrete fcu = 40 N/mm^2

                                Yield strength of steel fy = 250 N/mm^2

                               Material factor γm = .kN

                               Factored load = 1500 kN

           Step :- 2

                      Steel column section

                                Thickness of flange T = 12.7 mm

           Step :- 3

                       Area required 

                               Bearing strength of concrete = 0.4fcu

                                                                         = 16 N/mm^2

                               Area required = 93750 mm^2

                               Let size of plate 

                                                Bplate = 350 mm

                                                Dplate = 350 mm

                              Area of plate          = 122500 mm^2

                              Let projection on each side 

                                                      a = b

                                                         = 25 mm

                                                     w = 12.24 N/mm^2

                             Thickness of slab base ts = 7.7 mm

                                                                  < 12.70 mm

                               So use base plate of size 350mmx350mmx12mm.

  1.         d) Pedestal :- 

                             Grade of concrete = 40N/mm^2

                            Load = 123kN

                            Moment = 116kNm

                            Horizontal shear = 13kN

                            Yield strength = 250N/mm^2

                            Length of base plate L = 450mm

                            Width of the base plate B = 350mm

                            C/C distance of (Ld) of bolt group in Z = 300mm

                            C/C distance of (Ld) of bolt group in X = 180mm

                             Bearing strength of concrete fc = 16N/mm^2

                            Depth of column D = 300mm

                            Width of column W = 250mm

                 Step :- 1 

                            Anchor Bolt Details 

                                    Dia of anchor bolt = 24mm

                                    No of anchor bolt on each side = 4

                                    Total number of anchor bolt,n = 8

                                   Gross area of the bolt 'Asb' = 452.16mm^2

                                   Net area of the bolt 'Anb' = 352mm^2

                                   Ultimate tensile strength of the bolt fub = 400N/mm^2

                                   Fyb(Anchor bolt) = 240N/mm^2

                 Step :- 2

                             Base plate details 

                                   Ultimate tensile strength of a plate,fu = 490N/mm^2

                                   Thickness of plate = 16mm

                                   Yield stress of plate = 330N/mm^2

                 Step :- 3

                            Anchor bolt design 

                                  Area of the plate = 157500mm^2

                                  Stress Max pressure σ1 = F/A+6*Mz/BL^2

                                                                = 10.60N/mm^2

                                                                < 16

                                                               OK

                                             Min pressure σ2 = F/A-6*Mz/BL^2

                                                                = -9.04N/mm^2

                                                                < 16

                                             C = L*σ1/(σ1+σ2) 

                                                = 242.89mm

                                             a = L/2-C/3

                                                = 144.04mm

                                            e = (L-Ld)/2 
                                               = 75mm

                                            y = (L-C/3-e)

                                              = 294.04mm

                             Tension in anchor bolts along the length of plate 

                                               FT = (Mz-Fxa)/y

                                                   = 364.38

                                       Tension per bolt = 91.10kN

                                       shear per bolt,V = 1.63kN

                 Step :- 4

                             Shear check

                             Factored shear force Vsb = 1.63kN

                                                             Vd,sd = 81290.9N

                                                                      = 21.291kN

                                             Factored Vd,sb = 65.03kN

                  Step :- 5

                             Tensile check 

                             Factored tensile force in bolt Tb = 91.10kN

                             Tensile strength of bolt Td,b = Tnb/γmb

                                                               Tn,b = 0.9fubAn 

                                                                      = 126720N

                                                                      = 126.72kN

                                                              Tn,b = fybAsb(γmb/γmo)

                                                                      = 123316N

                                                                      = 123.316kN

                                       Lesser of two           =123.32kN

                             So,                            Td,b = 98.65kN

                 Step :- 6

                             Combined unity check  

                                       (Vsb/Vdb)^2+(Tb/Tdb)^2

                                                         Vsb/Vdb = 0.025

                                                         Tb/Tdb = 0.92

                                                    Unity check = 0.85

                                                                   < 1

                                                    Hence OK

                 Step :- 7

                             Anchor bolt length

                                     Bond strength in tension bd = 1.4N/mm^2

                                     Anchor length required = Tb/(3.14*d*τbd)

                                                                       = 863.44mm

                                   Let anchor bolt bolt length = 900mm                                              

  1.         e) Purlin :-

                 Step :- 1

                             Span of the purlin = 7m

                             Spacing of the purlin = 1.5m

                            Number of sag rods  = 1

                            Slope of the roof = 5deg

               Step :- 2

                           Dead loads 

                                  Weight of sheeting = 5kg/m^2

                                  Self weight of purlin = 4.22kg/m^2

                                  Additional load = 10%

                                                         = 0.42kg/m^2

                                  Total dead load = 0.096kN/m^2

                           Live loads 

                                 Live load on roof = 75kg/m^2

                                                          = 0.75kN/m^2

                          Wind loads 

                                 Basic wind spped = 50m/s

                                 Terrain category = 2

                                 Building class = B

                                                k1 = 1

                                                k2 = 1

                                                k3 = 1

                                 Design wind speed Vz = 57m/s

                                  Design wind pressure Pz = 1949.40N/m^2

                                                                      = 1.95kN/m^2

                                  Length of the building I = 50m

                                  Breath of the building w = 30m

                                  Height of the building h = 10.5m

                                  Height of the building at eaves = 9m

                                                                  h/w = 0.35

                                                                   I/w = 1.67

                                  External pressure coefficient 

                                         Maximum downward Cpe = -0.4

                                         Maximum upward Cpe = -0.7

                                   Internal pressure coefficient 

                                         Maximum positive Cpi = 0.5

                                         Maximum negative Cpi = -0.5

                                  For maximum upward wind force 

                                         Maximum upward Cpe = -0.7

                                                                    Cpi = -0.5

                                                          Cpe + Cpi = -1.2

                                                                     Pz = 1.95

                                       Wind pressure for purlin design = -2.339kN/m^2

                                  For maximum upward wind force 

                                       Max upward Cpe = -0.4

                                                         Cpi = 0.5

                                                   Cpe + Cpi = 0.1

                                                         Pz = 1.95

                                      Wind pressure for purlin design = 0.195kN/m^2

           Step :- 3

                      Design load calculation

                                    Spacing of purlin = 1.5m

                                    Slope of roof = 5deg

                                    Total dead load = 0.096kN/m^2

                                    DL normal component = 0.144kN/m

                                    DL tangential component = 0.013kN/m

                                    Total live load = 0.75kN/m^2

                                    LL normal component = 1.121kN/m

                                    LL tangential component = 0.098kN/m

                                    WL1 wind load = -2.339kN/m^2

                                    WL normal component = -3.496kN/m

                                   WL2 wind load = 0.195kN/m^2

                                   WL normal component = 0.291kN/m

                       Summary of loads 

 

DL+LL

DL+WL1

DL+LL+WL2

Normal load

1.265

-3.351

1.556

Tangential load

0.111

0.013

0.111

 

 

DL+LL

0.75(DL+WL1)

0.75(DL+LL+WL2)

Normal load

1.265

-2.514

1.167

Tangential load

0.111

0.009

0.083

                                  Maximum normal component = 1.265kN/m

           Step :- 4

                      Purlin section

                                  Section selected = Zx200x6x2.3

                                  Yield stress of material = 2400kg/cm^2

                                  Flange width b = 60mm

                                  Depth of section d = 200mm

                                 Thickness t = 2.30mm

                                 Length of Lip lip_I = 20mm

                                 Internal bending radius = 3mm

                                                           Area = 8.07cm^2

                                                           Zxx = 47.72cm^3

                                                           Zyy = 10.22cm^3

                                                           Ixx = 477.18cm^4

                                                           Iyy = 61.34cm^4

                                            Weight of purlin = 6.335kg/m

                                                                    =4.223kg/m^2

                      Check for basic properties 

                                                        t = 2.30mm

                                                        w = 49.40mm

                                                       Fy = 2400kg/cm^2

                                                       w/t = 21.48

                                                              < 60

                                                             OK

                           Check for stress

                                             Span major axis = 7m

                                             Span minor axis = 2m

                                             BM coefficient for Mxx = 10

                                             BM coefficient for Myy = 10          

 

DL+LL

DL+WL1

DL+LL+WL2

Normal load 

6.198

16.422

7.625

Tangential load 

0.060

0.007

0.060

Mxx/Zxx

129.878

344.133

159.789

Myy/Zyy

5.895

0.672

5.895

(Mxx/Zxx)+(Myy/Zyy)

135.773

344.805

165.684

                                                 Maximum compressive stress = 344.80N/mm^2

                                                                                  1435/sq.root of f = 24.44

                                                                                                            > 21.48

                                                                                 Hence section OK

           Step :- 5

                      Combined Bending And Shear stresses in web

                                                h/t = 84.96                                              

 

DL+LL

DL+WL1

DL+LL+WL2

Fbw

506.539

673.697

637.697

Fv

735.223

977.847

977.847

                          Actual stress

fbw

129.878

344.133

159.789

fv

5.895

0.672

5.895

fbw/Fbw

0.256

0.511

0.237

fv/Fv

0.008

0.001

0.006

Sqrt of sum of squares

0.257

0.511

0.237

                            Maximum combined stresses = 0.511

                                                                        < 1

                                                               OK

           Step :- 6 

                      Check for deflection

                              Number of spans = 3

                              Deflection = (3/384)(wl^4/EI)

                                         w = 3.351kN/m

                                   Span = 6m

                                        E = 207400N/mm^2

                                       Ixx = 477.18cm^4

                                       δ = 34.29mm

                 Allowable deflection δ = Span/180

                                                 = 33.33mm

                                                > 34.29

                                         Not OK

2) Design a simply supported gantry girder to carry electric overhead travelling crane

            Step :- 1

                     Span of gantry girder = 7 m

                     Span of crane girder = 9 m 

                     Crane capacity = 250 kN 

                     Self-weight of trolley, hook, electric motor etc. = 40 kN 

                     Self-weight of crane girder excluding trolley = 100 kN 

                     Minimum hook approach = 1.0 m 

                     Distance between wheels = 3 m 

                     Self-weight of rails = 0.2 kN/m

            Step :- 2

                    Maximum moment due to vertical load 

                         Weight of trolley + weight of load lifted = 290kN 

                          Self weight of crane girder = 100kN

                         For maximum reaction on girder, the moving load should be as close to the gantry as possible

                            Reaction at A RA = 501kN

                            Reaction at B RB = 281.875kN

                             Load on gantry girder from each wheel = 251kN

                             Factored wheel load = 375.833kN

                             Maximum moment ME = 634.21kNm

                            Letr self weight of girder = 2kN/m

                                   Dead load = 2.2kN/m

                                   Factored DL = 3.3kN/m

                                   M due to DL = 20.21kNm

                                   M due to impact load = 158.55kNm

                                   Factored moment due to all vertical loads

                                                         M = 812.99kNm

        Step :- 3

                     Maximum moment due to lateral load

                            Horizontal force transferred to rails = 29kN

                            Horizontal force on each wheel = 7.25kN

                            Factored horizontal force = 10.875kN

                           Maximum moment = 18.35kNm

                            Vertical shear due to wheel loads = 563.75kN

                                              Impact = 140.94kN

                                             Self weight = 9.90kN

                                           Total shear = 714.59kN

                                      Lateral shear due to surge = 20.68kN

       Step :- 4

                 Preliminary section determination

, ,,                       Minimum economic depth D = L/12

                                                                    = 583.333mm

                           Width of compression flange b = L/40 to L/30

                                                                       = 175 to 233

                           Required plastic modulus Zp = 1.4M/fy

                                                                     = 4552721

                                                                     = 4552.72x10^3

                           Let us try ISMB600 with ISMC400 on compression flange.

       Step :- 5

                    Properties of selected section                          

ISMB

600@1.22kN/m

A

15600mm^2

h

600mm

b

210mm

tf

20.3mm

tw

12mm

Izz

91800x10^4mm^4

Iyy

2650x10^4mm^4

R

20mm

 

ISMC

400@0.49kN/m

A

6380mm^2

h

400mm

b

100mm

tf

15.3mm

tw

8.8mm

Izz

15200x10^4mm^4

Iyy

508x10^4mm^4

Cyy

2.42mm

           Step :- 6

                       Let the distance of N>A> from, t,he tensio,n range by y'

                                                  y' = 388.93mm

                                                 Izz = 1348.13x10^6mm^4

                                                 Zez = 3466240mm^3

                             For compression flange about y-y axis

                                              I = 16766.7x10^4mm^4

                                             Zey = 838333mm^3

                             Total area of section = 21980mm^2

                            Let plastic N>A> be at a distance 

                                                               Yp = 580.88mm

                                                             Zpz = 4410317mm^3

                                        For top flange Zpy = 1078488mm^3

          Step :- 7

                     Section classfication

                                      For ISMB b/t = 4.90

                                                          < 9.4

                                                     d/t = 43.28

                                                           < 84

                                     For ISMC b/t = 5.96

                                                        < 9.4

                                    Hence section is plastic

             Step :- 8 

                        Check for local moment capacity

                               Local moment capacity for bending in vertical plane 

                                                 Mdz = fyZp/1.1

                                                        = 1002.34kNm

                                                 Mdz = 1.2Zefy/1.1

                                                        = 945.34kNm

                                 For top flange 

                                                Mdy = 245.11kNm

                                                Mdy = 228.64kNm

                                                In the above which ever the minimum value is taken

                                                 Mdz = 945.34kNm

                                                 Mdy = 228.64kNm

          Step :- 9 

                      Check for combined local capacity 

                                                (812.99/945.34)+(18.35/228.64)<1

                                                                  0.947<1

            Step :- 10

                         Check for buckling resistance 

                                                Md = βbZpfbd

                                                  βb = 1

                                              Lt = 7000mm

                                              E = 200000N/mm^2

                                              hf = 597.5mm

                                               Iy = 17850x10^4mm^4

                                               A = 21980mm^2

                                               ry = 90.12mm

                                      

                                              fcr,b = 417.43N/mm^2

                                                    λ = 0.744

                                                    φ = 0.95

                                                      = 0.97N/mm^2

                                                    fbd = 166.591

                                                   Mdz = 734.72kNm

                                                   Mdy = 202.84kNm

                                      Hence 1.20>1

                                        Hence section is unsafe against torsional buckling

             Step :- 11

                           Check for shear

                                              Vz = 714.59kN

                                    Shear capacity = Avfyw/(3^0.5x1.1)

                                                          = 944755N

                                                          = 944.755kN

                                                          > 714.59

                                                Now = 566.853kN

                                                              Low shear

           Step :- 12

                         Check for web buckling

                                                 b = 175mm

                                                 n1 = 232.6mm

                                                 d = 519.4mm

                                                 t = 12mm

                                                 = 104.746

                                                 Fcd = 128.6N/mm^2

                               Buckling resistance = 629008kN

                                                           > 714.59kN

           Step :- 13

                        Check for deflection at working load

                         Vertical deflection

                           Serviceability vertical wheel load = 251kN

                           Deflection at mid span a = 2000mm

                                                            Izz = 1348.13x10^5mm^4

                                                            

                                                            δ = 25.32mm

                                     Horizontal deflection

                                                           I = 16766.65x10^4mm^4

                                                           δ = 4.88mm

                                                         L/750 = 9.33mm

                                                          Unsafe in vertical direction.

                                                          Safe in lateral direction.

 

Question

1. Design a Warehouse Building located in Chennai using STAAD Pro Connect Edition. The specification must be as follows:

    

Width 

30m

Length

50m

Eave Height

9m

Bay spacing

6m

Soil type

Medium

Safe Bearing Capacity

200 kN/m2

Roof slope

1 in 12

Assume suitable sections for structural elements. Follow IS800:2007, IS1893 and IS 875

  1. Prepare a Design Basis Report for the project
  2. Create structural model using STAAD Pro Connect Edition
  3. Prepare DL, LL, WL and EQL load calculations as per IS 875 standards
  4. Design using MS – Excel
    1. Steel column
    2. Rafter
    3. Base plate
    4. Pedestal
    5. Z- purlin
  1. Design Foundations using STAAD Foundation.
  2. Attach necessary sketches and drawings wherever required.
  3. All stipulations, assumptions and design parameter must adhere to Indian Standards.


2. Design a simply supported gantry girder to carry electric overhead travelling crane

Given: 

Span of gantry girder = 7 m

Span of crane girder = 9 m 

Crane capacity = 250 kN 

Self-weight of trolley, hook, electric motor etc. = 40 kN 

Self-weight of crane girder excluding trolley = 100 kN 

Minimum hook approach = 1.0 m 

Distance between wheels = 3 m 

Self-weight of rails = 0.2 kN/m



Your Answers

1. Design a Warehouse Building located in Chennai using STAAD Pro Connect Edition. The specification must be as follows:

Width 

30m

Length

50m

Eave Height

9m

Bay spacing

6m

Soil type

Medium

Safe Bearing Capacity

200 kN/m2

Roof slope

1 in 12

Assume suitable sections for structural elements. Follow IS800:2007, IS1893 and IS 875

  1. Prepare a Design Basis Report for the project
  2. Create structural model using STAAD Pro Connect Edition
  3. Prepare DL, LL, WL and EQL load calculations as per IS 875 standards
  4. Design using MS – Excel
    1. Steel column
    2. Rafter
    3. Base plate
    4. Pedestal
    5. Z- purlin
  1. Design Foundations using STAAD Foundation.
  2. Attach necessary sketches and drawings wherever required.
  3. All stipulations, assumptions and design parameter must adhere to Indian Standards.

Step 1: Model is prepared in STAAD Pro.

Step 2: Section properties and Materials are applied to all the members.

Step 3: Releases and specifications are applied.

Step 4: Support conditions are applied.

3D Rendering is as follows

Step 5: Loading are calculated and Design Parameters are applied.

Calculation of Design Loads on PEB Structure – Project 2

  • Dead Load
  1. Dead Load on Rafter
  • Weight of Roof Sheet = 5 Kg/m2
  • Weight of Purlin and sag rods = 5 Kg/m2
  • Additional weight = 5 Kg/m2

Total weight of rafter = 15 Kg/m2

Dead load on rafter = 15 x 10 x 8 = 1200 N/m = 1.2 kN/m

  1. Dead Load on Purlin = 10 x 10 x 8 = 800 N/m = 0.8 kN/m
  2. Mezz Slab self-weight (150 mm thk slab) = 0.15 x 25 kN/m3 = 3.75 kN/m2
  3. Floor Finishes and additional load on Mezz Floor = (150 + 500) kg/m2 = 0.65 kN/m2
  4. Weight of 230mm thick brick wall (4-meter height) on Mezz floor = 20 kN/m3 x 0.23 x 4 = 18.4 kN/m
  • Live Load
  1. Live Load on Roof and canopy = 57 kg/m2 x 10 x 8 = 4.56 kN/m
  2. Live Load on Mezz Floor = 400 kg/m2 = 4 kN/m2
  • Collateral Load
  1. Collateral Load on Roof
  • Load of Electrical fittings = 0.1 kN/m2
  • Load of Sprinklers = 0.03 kN/m2
  • Load of rockwool Insulation and bubble wrap insulation = 0.15 kN/m2
  • Load of Solar Panels = 0.15 kN/m2
  • Load of Ceiling = 0.1 kN/m2

Total Collateral load on Roof = 0.53 x 8 = 4.24 kN/m

  1. Collateral Load on Mezz Floor (due to false ceiling & electrical fittings)

= 0.2 x 8 = 1.6 kN/m

  1. Collateral Load on column due to Bracket Beam

Load due to service line supported on the beam spanning 8 m width= 150 kg/m x 8 x 10 = 12 kN

Moment acting on column due to service line = 12 x 0.75 = 9 kNm

  1. Collateral Load on Jack Beam due to service line= 2.5 kN/m
  2. Collateral Load on Mezz False Ceiling = 3.2 kN/m
  • Wind Load

Basic wind speed = 50 m/s for chennai

K1 - 1.00

K2 - 1.05 (Terrain Catogory-1. Building height at eaves = 10.50 m)

K3 - 1.00

K4 - 1.00 (For other structures)

Coefficient of cyclonic wind may be taken as 1, 

Kd -0.9

Ka (Rafter) - 0.8 or as per tributary area.

Ka (Column) - 0.8245 or as per tributary area.

Ka (Purlin) - 0.9721 or as per tributary area.

Ka (Side Runner) - 0.978 or as per tributary area

Kc -0.9

Design wind pressure = pd = kd x ka x kc x 0.6 x (Vb x k1 x k2 x k3 x k4)2 = 0.652 kN/m2

But should not be less than 0.7 Pz = 0.7 x 1.006 = 0.704 kN/m2

Cpe - As per table 5 & 6 of IS: 875 (Part 3) – 2015

h/w = 10/60 = 0.6

L/w = 170/60 = 2.83

Cpe On wall:

Direction

A

B

C

D

0 deg.

0.7

-0.25

-0.6

-0.6

90 deg.

-0.5

-0.5

0.7

-0.1

 

Cpe On Roof:

Roof angle = 2.86

Direction

EF

GH

EG

FH

0 deg.

-0.86

-0.4

 

 

90 deg.

 

 

-0.8

-0.4

 

Cpi = 0.2

Wind Load on Columns = (Cpe – Cpi) x A x Pd

Wind about X Direction + Cpi = (0.7 – 0.2) x 8 x 0.704 = 2.816 kN/m on Wall A

Wind about X Direction + Cpi = (-0.25 – 0.2) x 8 x 0.704 = -2.534 kN/m on Wall B

Wind about X Direction + Cpi = (-0.6 – 0.2) x 6.75 x 0.704 = -3.802 kN/m on Wall C & D

 

Wind about X Direction - Cpi = (0.7 + 0.2) x 8 x 0.704 = 5.069 kN/m on Wall A

Wind about X Direction - Cpi = (-0.25 + 0.2) x 8 x 0.704 = -0.282 kN/m on Wall B

Wind about X Direction - Cpi = (-0.6 + 0.2) x 6.75 x 0.704 = -1.9 kN/m on Wall C & D

 

Wind about Z Direction + Cpi = (-0.5 – 0.2) x 8 x 0.704 = -3.942 kN/m on Wall A

Wind about Z Direction + Cpi = (-0.5 – 0.2) x 8 x 0.704 = -3.942 kN/m on Wall B

Wind about Z Direction + Cpi = (0.7 – 0.2) x 6.75 x 0.704 = 2.376 kN/m on Wall C

Wind about Z Direction + Cpi = (-0.1 – 0.2) x 6.75 x 0.704 = -1.425 kN/m on Wall D

 

Wind about Z Direction - Cpi = (-0.5 + 0.2) x 8 x 0.704 = -1.689 kN/m on Wall A

Wind about Z Direction - Cpi = (-0.5 + 0.2) x 8 x 0.704 = -1.689 kN/m on Wall B

Wind about Z Direction - Cpi = (0.7 + 0.2) x 6.75 x 0.704 = 4.276 kN/m on Wall C

Wind about Z Direction - Cpi = (-0.1 + 0.2) x 6.75 x 0.704 = 0.475 kN/m on Wall D

 

Wind Load on Rafters = (Cpe – Cpi) x A x Pd

Wind about X Direction + Cpi = (-0.86 – 0.2) x 8 x 0.704 = -5.970 kN/m on Side A Rafter

Wind about X Direction + Cpi = (-0.4 – 0.2) x 8 x 0.704 = -3.378 kN/m on Side B Rafter

 

Wind about X Direction - Cpi = (-0.86 + 0.2) x 8 x 0.704 = -3.716 kN/m on Side A Rafter

Wind about X Direction - Cpi = (-0.4 + 0.2) x 8 x 0.704 = -1.125 kN/m on Side B Rafter

 

Wind about Z Direction + Cpi = (-0.8 - 0.2) x 6.75 x 0.704 = -4.752 kN/m Side C Rafter

Wind about Z Direction + Cpi = (-0.4 - 0.2) x 6.75 x 0.704 = -2.851 kN/m Side D Rafter

 

Wind about Z Direction - Cpi = (-0.8 + 0.2) x 6.75 x 0.704 = - 2.851kN/m Side C Rafter

Wind about Z Direction - Cpi = (-0.4 + 0.2) x 6.75 x 0.704 = -0.950 kN/m Side D Rafter

 

Wind Load on Canopy

Cp - As per table 8 of IS: 875 (Part 3) – 2015

Roof Angle 2.86 deg.

Cp -ve = 1.08

Cp +ve = 0.35

 

Wind Load on Canopy (Upward) = 1.08 x 8 x 0.704 = 6.082 kN/m

Wind Load on Canopy (Downward) = 0.35 x 8 x 0.704 = 1.971 kN/m

 

  • Seismic Load

As per IS: 1893 - 2016

Seismic zone - III - Z = 0.16

Rf - 4.0

I - 1.0

SS - 3.0

25% of Live Load on roof considered for calculation of seismic forces.

100% of collateral load on roof considered for calculation of seismic forces.

50% of (Live load + Collateral load) on mezzanine floor considered for calculation of seismic forces.

100% of Dead load considered for calculation of seismic forces.

Design Parameters:

  • IS 800 LSD
  • FYLD = 345000 for Portal frame and Mezz Beams
  • FYLD = 250000 for Bracings
  • BEAM = -1
  • STP = 2 for welded sections
  • MAIN = 250 for tie beam
  • Ly = Lx = 1.5m for Rafter
  • Ly = Lx = 3.25m for Columns
  • Ly = Lx = 4.4m for columns supporting canopy
  • Lz = 11m for Internal columns
  • Ly = Lx = 0.5m for Mezz floor beams
  • Lz = 6.75m for Mezz Floor beams
  • Ly = 1.7m for Canopy Beam
  • RATIO = 1
  • STEEL TAKE OFF

Results of the analysis is as follows which shows are members are passing and no member property has failed.

Foundation Design:

Check for Max/min Bearing Pressure
 
a) wt of soil above the footing
 
= (area of footing-Area of pedestel)xdepth of soil x unit weight of soil
 
= ((13.35x3.35) - (0·3×0.45)) x 1.2 × 18 =239.45 KN
 
b) self wt of footing.
 
= (vol of footing + vol of pedestall)x unit wt of concrete. =
((3.35×3·35x0·7)+(0.3×0.4x1))× 25
 
199.77 KN
 
Total load on footing
 
= a+b+ Imposed load
 
=239.45+ 199.47 + 1500
 
1939.26 kN
 
Section modulus of footing
Z=bd^2/6
3.35×(3.35)^2/6
 
 
Maximam bearing pressure
 
P/A+M/Z
 
1939.26/(3.35+3.35)+150/6.26
 
= 196.7 kN/m^2
 
Min bearing Pressure
P/A+M/Z
M=148.8 kN/m^2
 
which is less than safe bearing capacity ie 200kN/m^2
As per Staad pro calculation.
 
Check for ultimate Bearing pressure
 
Max ultimate bearing pressure
 
P/A+M/Z
 
= (239.45 +199.77 +1.5x1500)/ 3.35×.35 +(1.5×50/6.26)
=275.5 kN/m2
 
Min ultimate Bearing Pressure
P/A+M/Z
=239.6-35.9=203.7kN/m^2
which is less than safe bearing capacity for ultimate Loads - 400 KN/m2
 
As per Staad pro calculations

2. Design a simply supported gantry girder to carry electric overhead travelling crane

Given: 

Span of gantry girder = 7 m

Span of crane girder = 9 m 

Crane capacity = 250 kN 

Self-weight of trolley, hook, electric motor etc. = 40 kN 

Self-weight of crane girder excluding trolley = 100 kN 

Minimum hook approach = 1.0 m 

Distance between wheels = 3 m 

Self-weight of rails = 0.2 kN/m

W= 250 +40= 290 KN
Self-Weight=100 KN
w= 100/9=11.11 kN/m
(∑">∑

Fy">Fy

=0). RA+ RB = 3900 KN
(∑Ma=0">∑Ma=0

) 290x1 + 100x 9/2 =Rb∗9">Rb∗9

 
Rb =(290+450)/9=82.2kN
Ra: 390-82.2=308kN
 
Load on gantry girder from each wheel = 308/2=154kN
(Σ⋅Fy=0)Rc+Rd">(Σ⋅Fy=0)Rc+Rd
 = 293.5 + 293.5
= 587 kN
∑Mc=0">∑Mc=0

  293.5(3.5 - 1.75 - 0.875) + 293.5(3.5 + 0.875) =7Rd">Rd

 
Rd">Rd
=220.12 kN
Rc">Rc
 = 587 - 220.12= 366.8kN
 
M = 366.8x            (0<=x<=0.875)
M= 366.8x - 293.5(x - 0.875)
73.3x-256.8            (0.875 <= x <= 4.375)
M = 366.8x - 293.5(x - 0.875)- 293.5(x - 4.375)
= 220.2x+1540.86   (4.375 <= x <= 7)
M(at x=0)=366.8x0=0
M(at x = 0.875) = 366.8x 0.875 = 320.425KNm
M (at x = 4.375)=-220.12x4.375 + 1540.86=577.8 KN
M (at x = 7) = -220.12X7 +1540.86 = 0
Mmax = 577.8kNm
appx equal to 578kNm
 
Moment due to additional impact load. of electric overhead travelling.
= 25% in case of electric overhead travelling
= 25% of 578 = 144.5kNm
Assume self weight of girder=2kN/m
Total weight of girder + rails= (2+0.2) KN/m = 2.2 KN/m.
Factored dead load =2.2x 1.5=3.3 KN/m 
Maximum moment = WL^2/8
=3.3x7^2/8
=20.21KN
M = (wLx)/2 - (wx^ 2)/2
For Mmax (dM)/(dx) = 0
Wl/2 - wx = 0
x = L/2
Mmax (at x=L/2)= wL/2 * L/2 - w/2 ( L/ 2 )^2
= (wL^ 2)/8
Total moment = 578+144.5+20.21
=742.71kNm-Mz
 
Lateral forces: [Horizontal forces transverse to rails ]
10% of weight of (crab+ lifted weight) for EOT Cranes = 10% of (40+250)
=29kN
 
This is transferred to all 4 wheels:
Load on each wheel =29/4 = 7.25kN
Factored 1oad = 7.25 * 1.5 = 10.875kN
My =(10.875/293.5)X578=21.4kNm
= Rc+Rd">Rc+Rd
 = 21.75
Rd">Rd
 =(10.875 x 0.875)+(10.875x4.375)/7
 
8.16KN
Rd">Rd
=21.4-8.15
=13.59kN
Me=Rc">Me=Rc
x4.375-10.875x3.5
=21.39kNm
 
Shear forces: -
∑Fy">∑Fy
=0
Rc+Rd">Rc+Rd
=587 kN
∑Mc">∑Mc
=0
293.5x3.5=7Rd">Rd
 
Rd">Rd
=146.75kN
Rc">Rc
=440.25kN
Vc=Rc">Vc=Rc
=440.25kN
 
Impact load 25 % extra
25% of 440.25=110kN
Shear force due to self weight = WL/2
= 4.375X7/ 2 = 15.31 KN
:: Total shear force = 440.25+110.06+15.31= 565.62kN
 
Lateral forces:
Lateral shear = (10.875/293.5)x440.25
=16.31kN
Longitudinal force :
5% of Static wheel load
5% of 293.5
14.67 kN
Preliminary section
D=L/12=7000/12=583.33
b=L/40 - L/30
=7000/40 - 7000/30
=175 to 233.33mm
Zpreqd=Mfy">Zpreqd=Mfy
x1.4            (k=1.3-1.6)
(740.21 x 10^6/250) x1.4
=4145.176x10^3mm^3
We will try ISMB 550 with ISMC 250
btf">btf

 = (250/2 - 14.1)/(7.1 + 19.3) = 4.2 [< 9.4 ε">ε

 = 9.4 ]
dtw">dtw

 = (550 - 2 x19.3)/(11.2) =45.7[<84 ε">ε

 =84]
 
therefore, Plastic section [βb">βb
 = 1]
yy - axis remains the same
zz-axis (NA):
Z=Σ(Az)ZA">Z=Σ(Az)ZA
 
(190 * 19.3 * 193/2) + [(550 - 2 * 19.3) * 19.2(193 + (59.2 * 93)/2)]+[190 * 193(55 - 193 + 193/2)]+[250*7*1*(550 + 7.4/2 )]+2x[(80-7.1)* 14.1x(550+7.1-(80-7.1)/2)/
2(190 * 19.3) + [555 - 2 * 19.3)x11.2]+(250*7.1)+ 2[14.1(80 - 7.1)]
= 333.33
 
Iyy">Iyy
total=1833.8x10^ 4 +219.1x10^ 4
= 2052.9 x10 ^ 4 mm^4
Izz">Izz

total=∑[A⋅(d)2]">∑[A⋅(d)2]

 
= [190x19.3x(333.33 - (19.3)/2) ^ 2]+[ 112(333.33 - 19.1(333.3 - 19.3) ^ 2)/2]+[11.2 x 197.37 x(193.34/2) ^ 2 ]+[190 x19.3 x(197.37 + 19.3/2) ^ 2+[250x 7.1 x (197.84 + 19.3 + 7.1/2) ^ 2]+2x[14.1 x(80 - 7.1) x(143.74 + (80 - 7.1)/2) ^ 2]
= 80243.5 x10 ^ 4mm^4
 therefore,
Zpz">Zpz
total=Z(A.D)=[190x19.3x(333.3*3-19.3/2 )]+[11.2x(333.3 -19.3)x(333 .33- 19.3)/2)] + [ll.2 x193.37 x 193.37/2] + [190x19.3x(197.37x193/2)] +[250 x7.1(197.37 +19.3+ 7.1/ 2 )]+[2x14.1(89 - 7.5)x(143.73+( 80-7.1/ 2)
=3477.55 x10^ 3 mm^3
Zpy">Zpy

 total= Σ(Ay¯)">Σ(A¯y)

 
= [550 - 2x19.3) * 11.2/2 * (11.2)/4 ]*2+[190/2 x19.3x 190/4 ]*4+[ (250/2 - 14.1) * 7.1*( 250/2 -14.1)/ 2+[14.1 x 80(125 - (14 .1)/2)] * 2
=717.819x 10^3 mm^3
 
Mdz">Mdz
- eq given in annexure E of IS 800 2007
Mdy=βb⋅Zpy⋅fyYmo">Mdy=βb⋅Zpy⋅fyYmo
 
= 1(717.819 * 10 ^ 3) * 250)/(1.11)
= 163.14KNm                                         [>My">My
 = 15.18KNm]
MyMdy+MzMdz≤1">MyMdy+MzMdz≤1
 
My">My
 = 15.18
Mdy">Mdy
=163.14
Mdz">Mdz
 = 527.35
Vd=Avfyw3⋅Ym0">Vd=Avfyw√3⋅Ym0
 
= 818.7KN 
Web-buckling and web crippling at support and at wheel load
Assume b = 150mm
n1">n1
 = D/2 = (550 + 7.1)/2
278.55mm
n2=2.5(tf+R1)">n2=2.5(tf+R1)
 
=2.5x (19.3+R_(1)=93.25
λ=2.5dtw">λ=2.5dtw
 
(2.5 * 475.4)/11.2
 
 
Table 9(C)
[fy =250 MPa]
 
fcd">fcd
 =107- (107-94.6)/10 x6.11 =99.4 MPa
fwb">fwb

 (at support)=b+n1tw⋅fcd">b+n1tw⋅fcd

 
=(150 + 278.55)× 11.2 × 99.4=477 kN
fwb">fwb

(at load)= b+n1tw⋅fcd">b+n1tw⋅fcd

 
=787.2kN
fwc">fwc

(at supports)=b+n2tw⋅fywYmo">b+n2tw⋅fywYmo

 
 =619.1kN

fwc">fwc(at load)= b+n2tw⋅fywYmo">b+n2tw⋅fywYmo

 
=856 kN
Deflection check
δc=WL36EI⋅[3a4L-a3L3]">δc=WL36EI⋅[3a4L−a3L3]
 
Fatigue check


Leave a comment

Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.

Please  login to add a comment

Other comments...

No comments yet!
Be the first to add a comment

Read more Projects by VARSHA MOHAN WAGH (60)

Project 2_Analyze and Design the RC office building as per IS standard code in TEKLA STRUCTURAL DESIGNER

Objective:

AIM:- To develop general arrangement for the RC office building. Also, to analyze and design the building as per IS standard code in TEKLA STRUCTURAL DESIGNER from the attachment. Also, to generate report of each member and extract drawings for structural plans, beam reinforcement details from the software. INTRODUCTION:- Tekla…

calendar

08 Nov 2022 05:25 PM IST

  • DESIGN
  • Tekla Structural Designer
Read more

To Generate report for Steel Industrial and RC structures using TSD

Objective:

Generate report for the steel building design from challenges 1 – 6 along with the loading summary AIM:- To generate report for the steel building design from challenges 1 – 6 along with the loading summary INTRODUCTION:-  Report generation helps us to get detailed report for each members and completed details of loadcases,…

calendar

08 Nov 2022 05:25 PM IST

  • DESIGN
Read more

To Design slab and foundation for an RC residential building using TSD

Objective:

Design the slab and foundation of the model. Outline the thought process for designing of the elements (column, beam, slab and foundations)  AIM:- To design the slabs and foundation for the model.  INTRODUCTION:- Slab design are done based on the dead load, live load and floor finishes and based on this slab thickness…

calendar

08 Nov 2022 05:24 PM IST

    Read more

    To Design RC column and beam for RC residential structure using TSD

    Objective:

    Based on the analysis design RC column and beam. AIM:- To design RC column and beam based on the analysis. INTRODUCTION:- Design of beam and column includes selection of member size, reinforcement required, grade of concrete etc. so as to transfer the load safely. Design is checked based on analysis preformed on strength…

    calendar

    08 Nov 2022 05:24 PM IST

      Read more

      Schedule a counselling session

      Please enter your name
      Please enter a valid email
      Please enter a valid number

      Related Courses

      Schedule a counselling session

      Please enter your name
      Please enter a valid email
      Please enter a valid number

                  Do You Want To Showcase Your Technical Skills?
                  Sign-Up for our projects.