Menu

Executive Programs

Workshops

Projects

Blogs

Careers

Placements

Student Reviews


For Business


More

Academic Training

Informative Articles

Find Jobs

We are Hiring!


All Courses

Choose a category

Loading...

All Courses

All Courses

logo

Loading...
Executive Programs
Workshops
For Business

Success Stories

Placements

Student Reviews

More

Projects

Blogs

Academic Training

Find Jobs

Informative Articles

We're Hiring!

phone+91 9342691281Log in
  1. Home/
  2. SAI HARSHITA M M/
  3. Project 1

Project 1

PROJECT 1 Given, Concrete floor thickness = 120 mm = 0.12 m S.W of floor = 0.12*25 = 3 kPa Floor finish and mech loads = 3 kPa Live load = 5 kPa Total load = 11 kPa S.W of beam = 0.5*0.75*25 = 9.375 kN/m Load on the indicated beam  = (11*1.5)*2 =33 kN/m Adding S.w of beam  = 33 + 9.375 = 42.375 kN/m Analyzing…

    • SAI HARSHITA M M

      updated on 10 Feb 2022

    PROJECT 1

    Given,

    Concrete floor thickness = 120 mm = 0.12 m

    S.W of floor = 0.12*25 = 3 kPa

    Floor finish and mech loads = 3 kPa

    Live load = 5 kPa

    Total load = 11 kPa

    S.W of beam = 0.5*0.75*25 = 9.375 kN/m

    Load on the indicated beam  = (11*1.5)*2

    =33 kN/m

    Adding S.w of beam  = 33 + 9.375 = 42.375 kN/m

    • Analyzing without considering load patterning
    • Solving by slope deflection method

      Fixed End Moments:

      MFAB = -(42.375*81)/12 = -286.03 kNm

      MFBA = 286.03 kNm

      MFBC=  -286.03 kNm

      MFCB = 286.03 kNm

      MFCD = -286.03 kNm

      MFDC = 286.03 kNm

      MFDE = -286.03 kNm

      MFED = 286.03 kNm

      Unknowns : θa, θb, θc, θd, θe

      E = 10 GPa = 10 * 10^6 kPa

      = 1 *10^7 kPa

      I = (0.5*0.75^3)/12 = 0.0176 m4

      EI = 1.76*10^5 kNm2

       

      End Moments:

      Span AB :

      M ab = MFAB + (2EI/L)(2θa + θb)

      =  -286.03 + (2*1.76*10^5/9)( 2θa  + θb )

      = -286.03 + 78222.2 θa + 39111.1 θb

      M ba = MFBA + (2EI/L)(2θb + θa )

      =  286.03 + (2*1.76*10^5/9)( 2θb  + θa )

      = 286.03 + 78222.2 θb + 39111.1 θa

      M bc = MFBC + (2EI/L)(2θb + θc)

      =  -286.03 + (2*1.76*10^5/9)( 2θb  + θc )

      = -286.03 + 78222.2 θb + 39111.1 θc

      M cb = MFCB + (2EI/L)(2θc + θb)

      =  286.03 + (2*1.76*10^5/9)( 2θc  + θb )

      = 286.03 + 78222.2 θc + 39111.1 θb

      M cd = MFCD + (2EI/L)(2θc + θd)

      =  -286.03 + (2*1.76*10^5/9)( 2θc  + θd )

      = -286.03 + 78222.2 θc + 39111.1 θd

      M dc = MFDC + (2EI/L)(2θd + θc )

      =  286.03 + (2*1.76*10^5/9)( 2θd  + θc )

      = 286.03 + 78222.2 θd + 39111.1 θc

      M de = MFDE + (2EI/L)(2θd + θe)

      =  -286.03 + (2*1.76*10^5/9)( 2θd  + θe )

      = -286.03 + 78222.2 θd + 39111.1 θe

      M ed = MFED + (2EI/L)(2θe + θd )

      =  286.03 + (2*1.76*10^5/9)( 2θe  + θd )

      = 286.03 + 78222.2 θe + 39111.1 θd

       

      Equilibrium equations:

      Mab = 0

       78222.2 θa + 39111.1 θb= 286.03

      Mba + Mbc = 0

      (286.03 + 78222.2 θb + 39111.1 θa) + (-286.03 + 78222.2 θb + 39111.1 θc) = 0

      39111.1 θa + 1.56 * 10^5 θb +39111.1 θc = 0

      Mcb + Mcd = 0

      39111.1 θb + 1.56 * 10^5 θc +39111.1 θd = 0

      Mdc + Mde = 0

      39111.1 θc + 1.56 * 10^5 θd +39111.1 θe = 0

      Med = 0

      39111.1 θd + 78222.2 θe = -286.03

      Solving the unknowns,

      θa = 0.00418

      θb = -0.00105

      θc = 0

      θd = 0.00105

      θe = -0.00418

      On Substituting,

      Mab = 0

      Mba = 367.38 kNm

      Mbc = -367.38 kNm

      Mcb = 244.96  kNm

      Mcd = -244.96 kNm

      Mdc = 367.38  kNm

      Mde = -367.38  kNm

      Med = 0

      Analyzing individual members,

      AB:

      ∑Ma = 0

      (42.375*9*4.5)-9Rb + 367.38 = 0

      Rb1 = 231.51 kN

      Ra = 149.87 kN

      BC:

      ∑Mc = 0

      -367.38 + 244.96 – (42.375*9*4.5) + 9 Rb2 = 0

      Rb2 = 204.3 kN

      Rc1 = 177.09 kN

      CD:

      ∑Md = 0

      -244.96+367.38-(42.375*9*4.5)+9Rc2 = 0

      Rc2 = 177.09 kN

      Rd1 = 204.3 kN

      DE:

      ∑Me = 0

      -367.38+9Rd2-(42.375*9*4.5)=0

      Rd2=231.51kN

      Re=149.87kN

      • Max positive and max negative moment in each span (considering load patterning)
    •  

      To get maximum positive moment in AB, AB and CD has to be loaded. Similarly to get maximum positive moment in CD, AB and CD has to be loaded with Live load including SW and DL. The remaining spans has to be loaded with self weight and DL alone

       

       

      S.W of floor =  3 kPa

      Mech services and Floor finishes = 3 kPa

      Total load = 6 kPa

      S.W of beam = 9.375 kN/m

      Load on the beam  = (6*1.5*2) = 18 kN/m

      Adding S.W = 18 + 9.375 = 27.375 kN/m

      Live Load on spans AB and CD = ( 5*1.5*2) = 15 kN/m

      Total load on AB and CD = 15 + 27.375 = 42.375 kN/m

      Solving by slope deflection method,

      Fixed End Moments:

      MFAB = -(42.375*81)/12 = -286.03 kNm

      MFBA = 286.03 kNm

      MFBC=  -(27.375*81)/12= -184.78 kNm

      MFCB = 184.78 kNm

      MFCD = -286.03 kNm

      MFDC = 286.03 kNm

      MFDE = -184.78 kNm

      MFED = 184.78 kNm

      Unknowns : θa, θb, θc, θd, θe

      E = 10 GPa = 10 * 10^6 kPa

      = 1 *10^7 kPa

      I = (0.5*0.75^3)/12 = 0.0176 m4

      EI = 1.76*10^5 kNm2

       

      End Moments:

      Span AB :

      M ab = MFAB + (2EI/L)(2θa + θb)

      =  -286.03 + (2*1.76*10^5/9)( 2θa  + θb )

      = -286.03 + 78222.2 θa + 39111.1 θb

      M ba = MFBA + (2EI/L)(2θb + θa )

      =  286.03 + (2*1.76*10^5/9)( 2θb  + θa )

      = 286.03 + 78222.2 θb + 39111.1 θa

      M bc = MFBC + (2EI/L)(2θb + θc)

      =  -184.78 + (2*1.76*10^5/9)( 2θb  + θc )

      = -184.78 + 78222.2 θb + 39111.1 θc

      M cb = MFCB + (2EI/L)(2θc + θb)

      =  184.78 + (2*1.76*10^5/9)( 2θc  + θb )

      = 184.78 + 78222.2 θc + 39111.1 θb

      M cd = MFCD + (2EI/L)(2θc + θd)

      =  -286.03 + (2*1.76*10^5/9)( 2θc  + θd )

      = -286.03 + 78222.2 θc + 39111.1 θd

      M dc = MFDC + (2EI/L)(2θd + θc )

      =  286.03 + (2*1.76*10^5/9)( 2θd  + θc )

      = 286.03 + 78222.2 θd + 39111.1 θc

      M de = MFDE + (2EI/L)(2θd + θe)

      =  -184.78 + (2*1.76*10^5/9)( 2θd  + θe )

      = -184.78 + 78222.2 θd + 39111.1 θe

      M ed = MFED + (2EI/L)(2θe + θd )

      =  184.78 + (2*1.76*10^5/9)( 2θe  + θd )

      = 184.78 + 78222.2 θe + 39111.1 θd

       

      Equilibrium equations:

      Mab = 0

       78222.2 θa + 39111.1 θb= 286.03

      Mba + Mbc = 0

      39111.1 θa + 1.56 * 10^5 θb +39111.1 θc = -101.25

      Mcb + Mcd = 0

      39111.1 θb + 1.56 * 10^5 θc +39111.1 θd = 101.25

      Mdc + Mde = 0

      39111.1 θc + 1.56 * 10^5 θd +39111.1 θe = -101.25

      Med = 0

      39111.1 θd + 78222.2 θe = -184.78

      Solving the unknowns,

      θa = 0.00474

      θb = -0.00216

      θc = 0.00130

      θd = -0.00044

      θe = -0.00214

      On Substituting,

      Mab = 0

      Mba = 302.46 kNm

      Mbc = -302.46 kNm

      Mcb = 201.99 kNm

      Mcd = -201.99 kNm

      Mdc = 302.46 kNm

      Mde = -302.46  kNm

      Med = 0

      Analyzing individual members,

      AB:

      ∑Ma = 0

      -9Rb1 + 302.46+(42.375*9*4.5)=0

      Rb1 = 224.3 kN

      Ra = 157.08 kN

      BC:

      ∑Mc = 0

      9Rb2 + 201.99-302.46-(27.375*9*4.5)=0

      Rb2 = 134.35 kN

      Rc1 = 112.02 kN

      CD:

      ∑Md = 0

      9Rc2 –(42.375*9*4.5)-201.99-302.46=0

      Rc2=179.52 kN

      Rd1 = 201.85 kN

      DE:

      ∑Me = 0

      9Rd2 –(27.375*9*4.5)-302.46=0

      Rd2 = 156.79 kN

      Re = 89.58 kN

      To get max positive and negative moment in span BC (as well as DE), BC and DE have to be loaded with LL

      Solving by slope deflection method,

      Fixed End Moments:

      MFAB = -(42.375*81)/12 = -184.78 kNm

      MFBA = 184.78 kNm

      MFBC=  -(27.375*81)/12= -286.03 kNm

      MFCB = 286.03 kNm

      MFCD = -184.78 kNm

      MFDC = 184.78 kNm

      MFDE = -286.03 kNm

      MFED = 286.03 kNm

      Unknowns : θa, θb, θc, θd, θe

      E = 10 GPa = 10 * 10^6 kPa

      = 1 *10^7 kPa

      I = (0.5*0.75^3)/12 = 0.0176 m4

      EI = 1.76*10^5 kNm2

       

      End Moments:

      Span AB :

      M ab = MFAB + (2EI/L)(2θa + θb)

      =  -184.78 + (2*1.76*10^5/9)( 2θa  + θb )

      = -184.78 + 78222.2 θa + 39111.1 θb

      M ba = MFBA + (2EI/L)(2θb + θa )

      =  184.78 + (2*1.76*10^5/9)( 2θb  + θa )

      = 184.78 + 78222.2 θb + 39111.1 θa

      M bc = MFBC + (2EI/L)(2θb + θc)

      =  -286.03 + (2*1.76*10^5/9)( 2θb  + θc )

      = -286.03+ 78222.2 θb + 39111.1 θc

      M cb = MFCB + (2EI/L)(2θc + θb)

      =  286.03 + (2*1.76*10^5/9)( 2θc  + θb )

      = 286.03+ 78222.2 θc + 39111.1 θb

      M cd = MFCD + (2EI/L)(2θc + θd)

      =  -184.78 + (2*1.76*10^5/9)( 2θc  + θd )

      = -184.78+ 78222.2 θc + 39111.1 θd

      M dc = MFDC + (2EI/L)(2θd + θc )

      =  184.78 + (2*1.76*10^5/9)( 2θd  + θc )

      = 184.78+ 78222.2 θd + 39111.1 θc

      M de = MFDE + (2EI/L)(2θd + θe)

      =  -286.03 + (2*1.76*10^5/9)( 2θd  + θe )

      = -286.03+ 78222.2 θd + 39111.1 θe

      M ed = MFED + (2EI/L)(2θe + θd )

      =  286.03 + (2*1.76*10^5/9)( 2θe  + θd )

      = 286.03+ 78222.2 θe + 39111.1 θd

       

      Equilibrium equations:

      Mab = 0

       78222.2 θa + 39111.1 θb= 184.78

      Mba + Mbc = 0

      39111.1 θa + 1.56 * 10^5 θb +39111.1 θc = 101.25

      Mcb + Mcd = 0

      39111.1 θb + 1.56 * 10^5 θc +39111.1 θd = -101.25

      Mdc + Mde = 0

      39111.1 θc + 1.56 * 10^5 θd +39111.1 θe = 101.25

      Med = 0

      39111.1 θd + 78222.2 θe = -286.03

      Solving the unknowns,

      θa = 0.00214

      θb = 0.00044

      θc = -0.00130

      θd = 0.00216

      θe = -0.00474

      On Substituting,

      Mab = 0

      Mba = 302.46 kNm

      Mbc = -302.46 kNm

      Mcb = 201.99 kNm

      Mcd = -201.99 kNm

      Mdc = 302.46 kNm

      Mde = -302.46  kNm

      Med = 0

      Analyzing individual members,

      AB:

      ∑Mb = 0

      9Ra + 302.46-(27.375*9*4.5)=0

      Rb1 = 156.79 kN

      Ra = 89.58 kN

      BC:

      ∑Mc = 0

      9Rb2 + 201.99-302.46-(42.375*9*4.5)=0

      Rb2 = 201.85 kN

      Rc1 = 179.52 kN

      CD:

      ∑Md = 0

      9Rc2 –(27.375*9*4.5)-201.99-302.46=0

      Rc2=112.02 kN

      Rd1 = 134.35 kN

      DE:

      ∑Me = 0

      9Rd2 –(42.375*9*4.5)-302.46=0

      Rd2 = 224.3 kN

      Re = 157.08 kN

    Leave a comment

    Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.

    Please  login to add a comment

    Other comments...

    No comments yet!
    Be the first to add a comment

    Read more Projects by SAI HARSHITA M M (21)

    Project 2_Analyze and Design the RC office building as per IS standard code in TEKLA STRUCTURAL DESIGNER

    Objective:

    PROJECT 2 AIM: To Develop general arrangement for the RC office building. To analyze and design the building as per IS standard code in TEKLA STRUCTURAL DESIGNER. To generate report of each member and to extract drawings for structural plans, beam reinforcement details from the software INTRODUCTION:      …

    calendar

    29 Nov 2022 11:10 AM IST

    • DESIGN
    • Tekla Structural Designer
    Read more

    To Generate report for Steel Industrial and RC structures using TSD

    Objective:

    CHALLENGE 13 1.Aim: To Generate report for the steel building design from challenges 1 – 6 along with the loading summary Introduction: Generating report is a very important task since it gives information on all the details of the members like loadings, section details, reinforcement, design calculations, design…

    calendar

    22 Nov 2022 12:29 PM IST

      Read more

      To Design slab and foundation for an RC residential building using TSD

      Objective:

      CHALLENGE 12 Aim: To Design the slab and foundation of the model. Outline the thought process for designing of the elements (column, beam, slab and foundations) Introduction: Slabs are the horizontal members in the structure that carry floor loads in the form of dead load, live load and service load. The slabs transfer…

      calendar

      16 Nov 2022 08:09 AM IST

        Read more

        To Design RC column and beam for RC residential structure using TSD

        Objective:

        CHALLENGE 11 Based on the analysis design RC column and beam. Aim: To design RC column and beam based on the analysis Introduction: Analysis is carried out by assuming the preliminary sizing of the members. Then check for members is carried out to find the members that have failed the design criteria. Resizing the members,…

        calendar

        04 Nov 2022 01:03 PM IST

        • Tekla Structural Designer
        Read more

        Schedule a counselling session

        Please enter your name
        Please enter a valid email
        Please enter a valid number

        Related Courses

        coursecardcoursetype

        Accelerated Career Program in Embedded Systems (On-Campus) - Powered by NASSCOM

        Recently launched

        0 Hours of Content

        coursecard

        5G Protocol and Testing

        Recently launched

        4 Hours of Content

        coursecard

        Automotive Cybersecurity

        Recently launched

        9 Hours of Content

        coursecardcoursetype

        Pre-Graduate Program in Bioengineering and Medical Devices

        Recently launched

        90 Hours of Content

        coursecardcoursetype

        Pre-Graduate Program in 5G Design and Development

        Recently launched

        49 Hours of Content

        Schedule a counselling session

        Please enter your name
        Please enter a valid email
        Please enter a valid number

                    Do You Want To Showcase Your Technical Skills?
                    Sign-Up for our projects.