All Courses
All Courses
PROJECT 1 Given, Concrete floor thickness = 120 mm = 0.12 m S.W of floor = 0.12*25 = 3 kPa Floor finish and mech loads = 3 kPa Live load = 5 kPa Total load = 11 kPa S.W of beam = 0.5*0.75*25 = 9.375 kN/m Load on the indicated beam = (11*1.5)*2 =33 kN/m Adding S.w of beam = 33 + 9.375 = 42.375 kN/m Analyzing…
SAI HARSHITA M M
updated on 10 Feb 2022
PROJECT 1
Given,
Concrete floor thickness = 120 mm = 0.12 m
S.W of floor = 0.12*25 = 3 kPa
Floor finish and mech loads = 3 kPa
Live load = 5 kPa
Total load = 11 kPa
S.W of beam = 0.5*0.75*25 = 9.375 kN/m
Load on the indicated beam = (11*1.5)*2
=33 kN/m
Adding S.w of beam = 33 + 9.375 = 42.375 kN/m
Solving by slope deflection method
Fixed End Moments:
MFAB = -(42.375*81)/12 = -286.03 kNm
MFBA = 286.03 kNm
MFBC= -286.03 kNm
MFCB = 286.03 kNm
MFCD = -286.03 kNm
MFDC = 286.03 kNm
MFDE = -286.03 kNm
MFED = 286.03 kNm
Unknowns : θa, θb, θc, θd, θe
E = 10 GPa = 10 * 10^6 kPa
= 1 *10^7 kPa
I = (0.5*0.75^3)/12 = 0.0176 m4
EI = 1.76*10^5 kNm2
End Moments:
Span AB :
M ab = MFAB + (2EI/L)(2θa + θb)
= -286.03 + (2*1.76*10^5/9)( 2θa + θb )
= -286.03 + 78222.2 θa + 39111.1 θb
M ba = MFBA + (2EI/L)(2θb + θa )
= 286.03 + (2*1.76*10^5/9)( 2θb + θa )
= 286.03 + 78222.2 θb + 39111.1 θa
M bc = MFBC + (2EI/L)(2θb + θc)
= -286.03 + (2*1.76*10^5/9)( 2θb + θc )
= -286.03 + 78222.2 θb + 39111.1 θc
M cb = MFCB + (2EI/L)(2θc + θb)
= 286.03 + (2*1.76*10^5/9)( 2θc + θb )
= 286.03 + 78222.2 θc + 39111.1 θb
M cd = MFCD + (2EI/L)(2θc + θd)
= -286.03 + (2*1.76*10^5/9)( 2θc + θd )
= -286.03 + 78222.2 θc + 39111.1 θd
M dc = MFDC + (2EI/L)(2θd + θc )
= 286.03 + (2*1.76*10^5/9)( 2θd + θc )
= 286.03 + 78222.2 θd + 39111.1 θc
M de = MFDE + (2EI/L)(2θd + θe)
= -286.03 + (2*1.76*10^5/9)( 2θd + θe )
= -286.03 + 78222.2 θd + 39111.1 θe
M ed = MFED + (2EI/L)(2θe + θd )
= 286.03 + (2*1.76*10^5/9)( 2θe + θd )
= 286.03 + 78222.2 θe + 39111.1 θd
Equilibrium equations:
Mab = 0
78222.2 θa + 39111.1 θb= 286.03
Mba + Mbc = 0
(286.03 + 78222.2 θb + 39111.1 θa) + (-286.03 + 78222.2 θb + 39111.1 θc) = 0
39111.1 θa + 1.56 * 10^5 θb +39111.1 θc = 0
Mcb + Mcd = 0
39111.1 θb + 1.56 * 10^5 θc +39111.1 θd = 0
Mdc + Mde = 0
39111.1 θc + 1.56 * 10^5 θd +39111.1 θe = 0
Med = 0
39111.1 θd + 78222.2 θe = -286.03
Solving the unknowns,
θa = 0.00418
θb = -0.00105
θc = 0
θd = 0.00105
θe = -0.00418
On Substituting,
Mab = 0
Mba = 367.38 kNm
Mbc = -367.38 kNm
Mcb = 244.96 kNm
Mcd = -244.96 kNm
Mdc = 367.38 kNm
Mde = -367.38 kNm
Med = 0
Analyzing individual members,
AB:
∑Ma = 0
(42.375*9*4.5)-9Rb + 367.38 = 0
Rb1 = 231.51 kN
Ra = 149.87 kN
BC:
∑Mc = 0
-367.38 + 244.96 – (42.375*9*4.5) + 9 Rb2 = 0
Rb2 = 204.3 kN
Rc1 = 177.09 kN
CD:
∑Md = 0
-244.96+367.38-(42.375*9*4.5)+9Rc2 = 0
Rc2 = 177.09 kN
Rd1 = 204.3 kN
DE:
∑Me = 0
-367.38+9Rd2-(42.375*9*4.5)=0
Rd2=231.51kN
Re=149.87kN
To get maximum positive moment in AB, AB and CD has to be loaded. Similarly to get maximum positive moment in CD, AB and CD has to be loaded with Live load including SW and DL. The remaining spans has to be loaded with self weight and DL alone
S.W of floor = 3 kPa
Mech services and Floor finishes = 3 kPa
Total load = 6 kPa
S.W of beam = 9.375 kN/m
Load on the beam = (6*1.5*2) = 18 kN/m
Adding S.W = 18 + 9.375 = 27.375 kN/m
Live Load on spans AB and CD = ( 5*1.5*2) = 15 kN/m
Total load on AB and CD = 15 + 27.375 = 42.375 kN/m
Solving by slope deflection method,
Fixed End Moments:
MFAB = -(42.375*81)/12 = -286.03 kNm
MFBA = 286.03 kNm
MFBC= -(27.375*81)/12= -184.78 kNm
MFCB = 184.78 kNm
MFCD = -286.03 kNm
MFDC = 286.03 kNm
MFDE = -184.78 kNm
MFED = 184.78 kNm
Unknowns : θa, θb, θc, θd, θe
E = 10 GPa = 10 * 10^6 kPa
= 1 *10^7 kPa
I = (0.5*0.75^3)/12 = 0.0176 m4
EI = 1.76*10^5 kNm2
End Moments:
Span AB :
M ab = MFAB + (2EI/L)(2θa + θb)
= -286.03 + (2*1.76*10^5/9)( 2θa + θb )
= -286.03 + 78222.2 θa + 39111.1 θb
M ba = MFBA + (2EI/L)(2θb + θa )
= 286.03 + (2*1.76*10^5/9)( 2θb + θa )
= 286.03 + 78222.2 θb + 39111.1 θa
M bc = MFBC + (2EI/L)(2θb + θc)
= -184.78 + (2*1.76*10^5/9)( 2θb + θc )
= -184.78 + 78222.2 θb + 39111.1 θc
M cb = MFCB + (2EI/L)(2θc + θb)
= 184.78 + (2*1.76*10^5/9)( 2θc + θb )
= 184.78 + 78222.2 θc + 39111.1 θb
M cd = MFCD + (2EI/L)(2θc + θd)
= -286.03 + (2*1.76*10^5/9)( 2θc + θd )
= -286.03 + 78222.2 θc + 39111.1 θd
M dc = MFDC + (2EI/L)(2θd + θc )
= 286.03 + (2*1.76*10^5/9)( 2θd + θc )
= 286.03 + 78222.2 θd + 39111.1 θc
M de = MFDE + (2EI/L)(2θd + θe)
= -184.78 + (2*1.76*10^5/9)( 2θd + θe )
= -184.78 + 78222.2 θd + 39111.1 θe
M ed = MFED + (2EI/L)(2θe + θd )
= 184.78 + (2*1.76*10^5/9)( 2θe + θd )
= 184.78 + 78222.2 θe + 39111.1 θd
Equilibrium equations:
Mab = 0
78222.2 θa + 39111.1 θb= 286.03
Mba + Mbc = 0
39111.1 θa + 1.56 * 10^5 θb +39111.1 θc = -101.25
Mcb + Mcd = 0
39111.1 θb + 1.56 * 10^5 θc +39111.1 θd = 101.25
Mdc + Mde = 0
39111.1 θc + 1.56 * 10^5 θd +39111.1 θe = -101.25
Med = 0
39111.1 θd + 78222.2 θe = -184.78
Solving the unknowns,
θa = 0.00474
θb = -0.00216
θc = 0.00130
θd = -0.00044
θe = -0.00214
On Substituting,
Mab = 0
Mba = 302.46 kNm
Mbc = -302.46 kNm
Mcb = 201.99 kNm
Mcd = -201.99 kNm
Mdc = 302.46 kNm
Mde = -302.46 kNm
Med = 0
Analyzing individual members,
AB:
∑Ma = 0
-9Rb1 + 302.46+(42.375*9*4.5)=0
Rb1 = 224.3 kN
Ra = 157.08 kN
BC:
∑Mc = 0
9Rb2 + 201.99-302.46-(27.375*9*4.5)=0
Rb2 = 134.35 kN
Rc1 = 112.02 kN
CD:
∑Md = 0
9Rc2 –(42.375*9*4.5)-201.99-302.46=0
Rc2=179.52 kN
Rd1 = 201.85 kN
DE:
∑Me = 0
9Rd2 –(27.375*9*4.5)-302.46=0
Rd2 = 156.79 kN
Re = 89.58 kN
To get max positive and negative moment in span BC (as well as DE), BC and DE have to be loaded with LL
Solving by slope deflection method,
Fixed End Moments:
MFAB = -(42.375*81)/12 = -184.78 kNm
MFBA = 184.78 kNm
MFBC= -(27.375*81)/12= -286.03 kNm
MFCB = 286.03 kNm
MFCD = -184.78 kNm
MFDC = 184.78 kNm
MFDE = -286.03 kNm
MFED = 286.03 kNm
Unknowns : θa, θb, θc, θd, θe
E = 10 GPa = 10 * 10^6 kPa
= 1 *10^7 kPa
I = (0.5*0.75^3)/12 = 0.0176 m4
EI = 1.76*10^5 kNm2
End Moments:
Span AB :
M ab = MFAB + (2EI/L)(2θa + θb)
= -184.78 + (2*1.76*10^5/9)( 2θa + θb )
= -184.78 + 78222.2 θa + 39111.1 θb
M ba = MFBA + (2EI/L)(2θb + θa )
= 184.78 + (2*1.76*10^5/9)( 2θb + θa )
= 184.78 + 78222.2 θb + 39111.1 θa
M bc = MFBC + (2EI/L)(2θb + θc)
= -286.03 + (2*1.76*10^5/9)( 2θb + θc )
= -286.03+ 78222.2 θb + 39111.1 θc
M cb = MFCB + (2EI/L)(2θc + θb)
= 286.03 + (2*1.76*10^5/9)( 2θc + θb )
= 286.03+ 78222.2 θc + 39111.1 θb
M cd = MFCD + (2EI/L)(2θc + θd)
= -184.78 + (2*1.76*10^5/9)( 2θc + θd )
= -184.78+ 78222.2 θc + 39111.1 θd
M dc = MFDC + (2EI/L)(2θd + θc )
= 184.78 + (2*1.76*10^5/9)( 2θd + θc )
= 184.78+ 78222.2 θd + 39111.1 θc
M de = MFDE + (2EI/L)(2θd + θe)
= -286.03 + (2*1.76*10^5/9)( 2θd + θe )
= -286.03+ 78222.2 θd + 39111.1 θe
M ed = MFED + (2EI/L)(2θe + θd )
= 286.03 + (2*1.76*10^5/9)( 2θe + θd )
= 286.03+ 78222.2 θe + 39111.1 θd
Equilibrium equations:
Mab = 0
78222.2 θa + 39111.1 θb= 184.78
Mba + Mbc = 0
39111.1 θa + 1.56 * 10^5 θb +39111.1 θc = 101.25
Mcb + Mcd = 0
39111.1 θb + 1.56 * 10^5 θc +39111.1 θd = -101.25
Mdc + Mde = 0
39111.1 θc + 1.56 * 10^5 θd +39111.1 θe = 101.25
Med = 0
39111.1 θd + 78222.2 θe = -286.03
Solving the unknowns,
θa = 0.00214
θb = 0.00044
θc = -0.00130
θd = 0.00216
θe = -0.00474
On Substituting,
Mab = 0
Mba = 302.46 kNm
Mbc = -302.46 kNm
Mcb = 201.99 kNm
Mcd = -201.99 kNm
Mdc = 302.46 kNm
Mde = -302.46 kNm
Med = 0
Analyzing individual members,
AB:
∑Mb = 0
9Ra + 302.46-(27.375*9*4.5)=0
Rb1 = 156.79 kN
Ra = 89.58 kN
BC:
∑Mc = 0
9Rb2 + 201.99-302.46-(42.375*9*4.5)=0
Rb2 = 201.85 kN
Rc1 = 179.52 kN
CD:
∑Md = 0
9Rc2 –(27.375*9*4.5)-201.99-302.46=0
Rc2=112.02 kN
Rd1 = 134.35 kN
DE:
∑Me = 0
9Rd2 –(42.375*9*4.5)-302.46=0
Rd2 = 224.3 kN
Re = 157.08 kNLeave a comment
Thanks for choosing to leave a comment. Please keep in mind that all the comments are moderated as per our comment policy, and your email will not be published for privacy reasons. Please leave a personal & meaningful conversation.
Other comments...
Project 2_Analyze and Design the RC office building as per IS standard code in TEKLA STRUCTURAL DESIGNER
PROJECT 2 AIM: To Develop general arrangement for the RC office building. To analyze and design the building as per IS standard code in TEKLA STRUCTURAL DESIGNER. To generate report of each member and to extract drawings for structural plans, beam reinforcement details from the software INTRODUCTION: …
29 Nov 2022 11:10 AM IST
To Generate report for Steel Industrial and RC structures using TSD
CHALLENGE 13 1.Aim: To Generate report for the steel building design from challenges 1 – 6 along with the loading summary Introduction: Generating report is a very important task since it gives information on all the details of the members like loadings, section details, reinforcement, design calculations, design…
22 Nov 2022 12:29 PM IST
To Design slab and foundation for an RC residential building using TSD
CHALLENGE 12 Aim: To Design the slab and foundation of the model. Outline the thought process for designing of the elements (column, beam, slab and foundations) Introduction: Slabs are the horizontal members in the structure that carry floor loads in the form of dead load, live load and service load. The slabs transfer…
16 Nov 2022 08:09 AM IST
To Design RC column and beam for RC residential structure using TSD
CHALLENGE 11 Based on the analysis design RC column and beam. Aim: To design RC column and beam based on the analysis Introduction: Analysis is carried out by assuming the preliminary sizing of the members. Then check for members is carried out to find the members that have failed the design criteria. Resizing the members,…
04 Nov 2022 01:03 PM IST
Related Courses
0 Hours of Content