Modified on
08 Aug 2022 01:19 pm
Skill-Lync
Let’s say that we want to study how a cube-shaped block of wood would crack up when hit with a hammer. We can simply take a wooden block and hit it to see what would happen. The cube might crack up or even break into pieces, depending on how hard we hit it. But we won’t be able to see the miniature crack patterns inside the unbroken pieces of wood.
But if we can build a cube using Lego-shaped miniature pieces of wood and hit it with a hammer, we can then take the pieces apart to see how the cracks propagate inside. This can help us understand the physics behind how each force affects the material and shape, and help us improve the design.
This is how FEA works. We replace the whole geometry of the object with smaller finite elements and we analyse each element after performing tests. The smaller elements need not necessarily be cubes. It can be any shape, depending on the whole geometry. When we solve problems using FEA, the results are approximate and they are often verified by other methods. The accuracy of the answers depends on the size of the finite elements. But they will confirm the performance of the product.
FEA is done computationally using CAE tools. Consider the following image:
Here, a beam is subjected to finite element analysis to understand how it will react to stress. The different colors denote the varying amount of stress acting on the beam. As you can see, the higher end of the bar (colored pinkish red) has the maximum amount of stress. This means that this specific area is prone to damage more than the other areas. So we can improve the design by:
There are many other solutions as well, depending on the purpose and design of the beam.
If we haven’t performed FEA and rather used the same product on a prototype, we would have arrived at the same conclusion through the harder way. We will have to then re-design the prototype and test it again, which is time consuming and economically tight. Performing FEA helps us to find the problems with the design and solve them before it is made into a prototype, to save time and money.
FEA can be performed in two areas:
The ultimate goal of FEA is to completely eliminate prototype testing and make the whole process virtual. We are still a long way behind that. Yet, a lot of companies are working their way towards it.
Author
VivekB
Author
Skill-Lync
Subscribe to Our Free Newsletter
Continue Reading
Related Blogs
Learn how to render a shock-tube-simulation and how to work on similar projects after enrolling into anyone of Skill-Lync's CAE courses.
10 May 2020
In this blog, read how to design the frontal BIW enclosure of a car (Bonnet) and learn how Skill-Lync Master's Program in Automotive Design using CATIA V5 will help you get employed as a design engineer.
10 May 2020
This effect shown in the kinematic hardening is known as the Bauschinger effect. For large strain problems, kinematic hardening model is not a good choice because of the Bauschinger effect.
27 Jun 2022
When the elements in a model deform but the strain energy is not computed for that deformation, it results in an Hourglass deformation effect or Hourglass effect. Usually, this can be clearly seen in the post-processing stage where the elements will have a zig-zag formation.
28 Jun 2022
Engineering and mathematical problems that are space and time-dependent can be described by partial differential equations.
29 Jun 2022
Author
Skill-Lync
Subscribe to Our Free Newsletter
Continue Reading
Related Blogs
Learn how to render a shock-tube-simulation and how to work on similar projects after enrolling into anyone of Skill-Lync's CAE courses.
10 May 2020
In this blog, read how to design the frontal BIW enclosure of a car (Bonnet) and learn how Skill-Lync Master's Program in Automotive Design using CATIA V5 will help you get employed as a design engineer.
10 May 2020
This effect shown in the kinematic hardening is known as the Bauschinger effect. For large strain problems, kinematic hardening model is not a good choice because of the Bauschinger effect.
27 Jun 2022
When the elements in a model deform but the strain energy is not computed for that deformation, it results in an Hourglass deformation effect or Hourglass effect. Usually, this can be clearly seen in the post-processing stage where the elements will have a zig-zag formation.
28 Jun 2022
Engineering and mathematical problems that are space and time-dependent can be described by partial differential equations.
29 Jun 2022
Related Courses